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ABSTRACT

The most urgent public health problem today is to devise effective strategies

COminimize the destruction caused by the AIDS epidemic. This complex problem

will involve Inedicai advances slid new public health and education Ir]itiatives.

Mathematical models based on the underlying transmission mechanisms of the AIDS

virus can help the medical/scientific community understand and anticipate its

spread in different populations and evaluate the potential effectiveness of

different approaches for bringing the epidemic under control Before we can use

models to predict the future, we must c~refully test them against the past snread of

the infection and for sensitivity to p~rameter changes. The long al~d extremely
.

variable Incubation period and the low prob~blllty of transmitting the AIDS virus in

a sln,~le contact Imply that population structure and variations In Infectl’’ity both

play an important role In its spread. This structure occurs because ot differences

between people Ill numbers of sexual partners and tlII tJse o! lntr~venou> dr(!gs and

because of the way In which people mix among age, (?th:l~c, and social groups. We

use a slmpllfled approach to lnve~tlgate the effects of v~]rlatlon In Incuhatlon

periods and In fectlvlty speclflc to the AIDS virus and we ~omp~rc ~ model of r~ndom

partner choices WI II} a model In which pdrtnert both (.orne from slmllar beht+vlor

groups
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1. INTRODUCTION

Most current predictions of the acquired immunodeficiency syndrome (AIDS)

epidemic are based on simple exponential or polynomial extrapolations of current

trends. These curve-fitting methods cannot be used reliably for long periods cf

time, nor can they provide understanding of the interactions that lead to the

epidemic’s spread. During the long asymptomatic period after infection with the

human immunodeficiency virus (HIV) that causes AIDS, changes in the environment

of viral transmission occur continuously, causing complex interactions. Only models

that are founded on the transmission mechanisms of HIV can show how the early

infection of high-risk groups, behavioral changes, and future medical advances such

as treatments and vaccines will affect the future ccurse of this epidemic. The effects

will be highly nonlinear functions of the parameter values and at times may even

iead to changes that are counter to both intuition and si~mple extrapolated

predictions. The mathematical model predictions of these counter intuitive

mechanisms may greatly improve our understanding of the observations.

In developing the mathematical models, ‘we are creating a logical structure

that orgznizes existing information on AIG> into a coherent framework and

suggests new information ihat must be collected about a wide variety of topic,s

such as drug use, sexual activity, and the interactions between HIV and the immune

system, Models can provide qualitative insights, even when data are lacking, and

can help prioritize data collection.

We have already gained some qualitative insights from our modeling work.

For example, we have seen that the amount of sexuai contact and needle-sharing

between high -actlwty and lower-activity Individuals determines both who gets

infected and the speed with which the epidemic progresses. If ttlere IS Ilttle mixing

between these groups, then the individuals In hlghrlsk groups are i~early all

Infected before the infection moves into lGwer rtsk groups. However, If mixing IS

large, many more Iower-ti+ individuals will be infected in the early stages of the

epidemic. The epidemic moves much faster when mixing IS large because there IS a

larger pool of !ower risk individuals to feed It. In a model where partners are

chosen randomly, irrcgardless of their partner change r~te, the total nun,ber ef

infected low-risk individual~ quickly exceeds the number of infected h!gh-risk

individuals. This result IS contrary to experience and reflects the urgent need to

collect and analyze the information on mixing patterns to e~tlmate critical model

parameters.



1.2

The probability of infection per contact is too poorly unders~.~od to use the

AIDS caseload data to distinguish between these mixing patterns. Our modeling

also indicates that, if the difference between male-to-female and female-to-ma!e

infectivity is large, then the lower of these two in festivities will tend to determine

heterosexual spread, with epidemic patterns potentially different from that seen in

homosexuals and intravenous (lV-drug) users. This difference indicates that

collecting and analyzing information on infectivity should also be high priority.

The infectivity is significantly lower in the middle stage of HIV infection than

when end-stage disease (AIDS) approaches. Therefore, testing and counseling

programs that identify and persuade infected individuals to avoid infecting others

I.WI!! be ,more effective than if the infectivity were constant. Models to predict the

role of testing and counseling must include the effects of variable infectivity.

Although it is unlikely that any model will provide accurate long-term

predictions of the numbers of AIDS cases, a model that is based on interactions that

lead to disease transmission could eventually allow investigators to answer many

questions. For example, one can assume increased condom use by people in a

targeted age group and region and then determine how much that increased use

will slow the local course of the epidemic. Thi~ predictive ability would then help

authorities decide if it is more effective to encourage condom use in that group

than to use another strategy, such as stressing the importance of having fewer

partners o: reducing the Incidence of other sexually transmitted diseases (STDS), to

lower the probability of inf~ction for \ome population groups. AS another exa~nple,

a partially effective vaccine with poten?:ally harmful side effects might be

developed. Somehow it must be ascertailied which persons should be vaccinated.

The model would be used to understand how vaccinating each group affects the

spread of the epldemlc.

To prevent new infections, Intervention st{ategles must foc~s on the groups

currently being Infected, and those next at rirk Although the most ~ccesslble and

dramatic data come from AIDS cases, these cases prlmarlly represent Infections that

occurred 4 or more years ago To understand wher~ Infectmns are occurring today

IS a olfflcult task Model> can help In plannlny future seroprevalerlce studies and

intervention strategies by provldlng a consistent picture that lnd’cate~ where the

epldemlc front llne~are Ilkely to be

As models are developed, they must be tested for consistency with the pas!

history of the epldem~c We cannot hope to pred~ct the future before we can
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explaln the past. Much of the focus of this paper is, therefore, on understanding

past HIV spread in homosexual men.

Any inconsistencies between the data and the models need an explanation:

matching parameters so that the absolute numbers of AIDS cases are correct is not a

verification that a model is correct. Many different models can match these gross

data sets and forecast widely different futures. Parameter estimates must lie within

ranges obtained by independent observations. Correlated residuals between the

fitted model predictions and AIDS data may give important clues to additional

mechanisms that models must incorporate. Data from seroprevalence and cohort

studies shouid also be consistent with the model’s predictions. For example, a

random-mixing moael leads to a fast early growth in infection in homosexual n~en

with 2-5 partners per year. This growth rate is inconsistent with the data from

testing blood samp!es obtained before 1982 (Darrow et al., 1987; Goedert et al.,

1984) and also with the Center for Disease Control (CDC) case-tracing study of the

first men with AIDS (Auerbach et al., 1984). On the other hand, in a model where

high-risk individuals primarily mix with others at high risk, then lower-risk groups

are not infected in the early stages, This model is consistent with the AIDS data and

agrees with the seropositivlty studies, We plan to test the hypothesis that most

mixing was between men of similar risk behavior by analyzing the San Francisco

Hepatitis R data on behavior versus infection from 1978 to 1982,

Another use of models is to estimate unknown data based on the known facts

For ex~wp~e, the past distribution of HIV Infection can be estimated from the

current AIDS caseload and the distribution of times from infection to AIDS To

determine the consist~ncy of the generated data requires a formal mathematical

model similar to the one we are designing. The available data can also be assessed

Indirectly to determine their Internal consistency by Ieavlng some data out,

generating est!rmates of the mlsslng data based on one or more models, and then

comparing the two data sets,

“Fhe HIV that causes AIDS IS primarily transmitted through sexual contact (man

woman, man man), sharing of hypcrdermic needles, and exposure to Infected blood

either pervnatally or through blood transfusions HIV IS not transmitted by

nonsexual dally contacts, even though the virus ha’. been lscl~ted from almost every

body fluld (Fischl et al,, 1987) The ll~fectlon risk to an Indlvldual depends both on

the behavior of the Indlvldual and on the prevalence of infection In the groups with

which the Individual has sexual contacts or sharel rleedle% This prevalence varies

between regions and age groups, as well as between behavioral risk groups AI]
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individual is more likely to become infected if he or she has multiple sexual partners,

has sexual partners in a high-risk group; lives in a highly populated area; lives in the

New York City, Washington, DC, San Francisco, or Los Angeles areas; shares needles

when using drugs; is between 25 and 35 years of age, or has another STD.

A single model that tried to address all of the questions raised in this paper

would contain too many variables to be solved numerically on even the largest and

most advanced computers. Even if it were possible to solve the system, not enough

is known about human behavior to supply the necessary information to the

program, nor would a deep understanding of the interactions of the transmission

network be gained by initially solving a large sy~tem. Instead, simplified submodels

must be developed to address specific questions. The assumptions behind these

models should be clear, including both what is being neglected that can probably

be neglected and what is neglected that is unrealistic. Studying families of simple

models will allow us to understand how different factors interact in the spreading

of the AIDS virus.

For example, to comprehend how precisely the infectivity profile

(infectiousness with time since infection) must be measured, one can !ook at the

sensitivity of a very simple model to variations in the profile. Such a model can lump

age groups and reglon~, but it cannot ignore all nonheterogenelt’es in sexual-

partner choices. On the other hand, if we wish to understand how age differences

may delay spreading the Infection from one age group into another, then we

cannot ignore age-structured behavior. The behavior of simple models should be

carefully investigated to build a picture of Interact Ions that WIII allow us to make

estimates that lead to simplifications in more global models.

For rnodellng purposes, the portion of the male and female population that

engages in behaviors that put them at risk for HIV, namely, nonmonogomous sexuai

col}tact and needle-sharing drug use, IS dlvlded according to their risk behaviors and

the mannef t.Iy which they choose partners Susceptible persons are Infected

through contacts with Infected persons, and Infected persons develop clinlcal AIDS

(such as Kaposl’s sarcoma [KS] or opportunistic InfectIons such as pneurnocystls

pneumonia [PCP]) at a rate that depends on the length of time since HIV infection

AIDS patients subsequently dw at a rate that depends on the length of time since

AiDS developed and on the type of cllnlcal manifestation (either KS or opportunistic

lr~fectlons). We assume that an Infected person remains Infected and Infectious for

Ilfe This one way mtgratlon of susceptlbles to In fecteds is due to the chrotnosomal

lntegratlGr~ of the provlrol DNA inio the host cell

s

b
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In the next three sections, we discuss many of the risk factors and aspects of

the AIDS virus that we foresee as being important to the epidemic and some that

will eventually be found to be unimportant. The future spread of the virus in the

United States and Europe will most likely be through sexual contact and drug

needle-sharing. A model of the transmission pattern in Africa would require also

including blood transfusions and perhaps other factors.

In Section IV, we discuss the growth of AIDS cases in the United States to date.

The total number of cases has grown as time cubed, within a few percent. We use

an extrapolation of this cubic and estimates of the distribution of times i,om

infection to AIDS diagnosis to estimate the growth in infecteds.

In Section V, we present simple models, which are chosen to allow

investigation of a particular set of questions about th~ epidemic that has occurred

so far in the United States. These questions include the sensitivity of models to the

variation in infectiousness as time since infection, the effect that saturation of risk

groups due to random or biased partner choice has on the shape of the epidemic,

and the importance of multiple contacts between partners. In Sections VI and Vll we

discuss parameter estimates and present numerical investigations of these models.

As we discuss the issues that are important for modelers to consider, we will be

providing a logical structure for the diverse data that researchers are collecting.

Also, new questions and insights will arise to guide investigators in directing their

research to add to the general understanding of this epidemic.
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Ii. POPULATION RISK STRUCTURE

In contrast to our current understanding of the transmission of malaria (Aron,

1988, Ross, 191 1), measles (Dietz and Schenzle, 1985), rubella (Anderson and May,

1985), rabies (Murray et al., 1987, and many other diseases (Anderson and May,

1982), little is known about modeling the behavior of STDS in the sexually active

community. To analyze the HIV transmission dynamics, the sexual activity and

needle-sharing drug use of the susceptible population must first be understood and

modeled. These activities, about which little is known, pose formidable research

questions in themselves.

The risk group from which a person chooses partners for sex or needle-sharing

is an important social question about which little is known. The married man who

has an affair with a married woman takes a different risk from one who solicits a

prostitute once a year. Both men may have the same number of new partners each

year, but they have chosen those partners in a very different manner.

Risk also depends on the infectiousness of each contact, which depends on the

type of contact, the use of protective measures, and where the infected person is in

the course of the infection. It is perhaps important to note that the infectiousness

of HIV is sufficiently low that the spouse of an infected person may not become

infected until about a year before AIDS develops (Fischl et al., 1987; Goedert, et al.,

1987 b), so that a person may not necessarily become infected if his/her long-term

partner does.

Some recent information on the amount en ‘ type of drug abuse in the United

States is available from the National Survey on Drug Abuse conducted by the

National Institute on Drug Abuse. On the other hand, no large-scale studies

specifically aimed at sexual behavior have been conducted in the United States since

the Kinsey Studies more than 35 years ago. However, a number of other studies,

such as fertility studies, have included some questions on sexual behavior or have

studied specific groups. Several ongoing efforts involve searching through these

studies for information relevant to HIV spread (John Gagnon at SUNY at Stony

Brook, Wendy Cain at the National Institute for Child Health and Human

Development (NICHD]). In addition, NICHD is designing and will implement a

nationwide survey of sexual behavior and needle-sharing behavior specifically

aimed at gathering information about the transmission of the AIDS virus.

Endemicity of the infection also plays a major role. Once the infection

becomes endemic in a group of people, i( may spread in that group fairly rapidly,

whereas another group that has few contacts with infected groups may remain
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protected for a long time. Age differences, physical c’istance, ethnicity, and other

social groupings may all provide barriers to the spreading of infection. Behaviors

also vary between different groups of people, !eading to different spreading rates

in different groups.

The risk-group divisions we have identified as being of possible importance to

the spreading of this epidemic include the following:

a: age,

r: number of new male partners per year,

s: number of new female partners per year,

g: sexual activity group,

d: number of people with whom needles are shared per year,

p: population density,

z: zone of the country,

e: ethnicity or social group, and

c: cofactors.

Some of these (a,p,z,e) act as barriers to the spread of the disease. That is,

people of similar ages and ethnicity who are living in nearby geographic regions are

more likely to spread the virus among themselves than they are to other groups.

Other factors (r,s,g,d,c) deti?rmine how the spreading occurs within social groups.

The transmission of AIDS involves long time scales ar,d, therefore, members

are not frozen into a given risk group once they have entered it. This flow occurs

because behavior change! with age, marital status, knowledge of infection,

changing social mores, and (educational efforts and becaust’ of movement of people

between geographic regions. This flclw is an additional source of contact between

risk groups

A. AGE

Age is important for a number of reasons. There is a distribution of ages at

which people become sexual!y active and presumably tend to migrate (irst into

more active groups and then into long-term relationships as they age. Drucj use is

age dependent. The use of particular drugs, such as heroin, goes in and out of \tyle

and is thus generational (R. Chaisson and A. Moss, UC San Francisco, personal

communication). There are natura! barriers to contacts between age groups so that

the infection will not spread between age groups as rapidly as within an age grocp.

Social groups, such as high school or college students, are age dependent. The

amount and type of traveling done also are age dependent. The number of
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children born with the HIV infection will depend on the number of infected women

who are having children, which varies with age. Death rat~s, health, and disease

progression (Wiley et al., 1987) are age dependent.

In regions where AIDS becomes a major problem, as it already has in central

Africa, this epidemic has the potential to deplete the productive age groups in the

short range and to entirely change the population’s age structure in the long run

(May et ai., 1988).

B. SEXUAL ACTIVITY

Risk from sexual activity depends on the probability of choosing an infected

partner as well as on the number and type of contacts with an infected partner. The

probability of choosing a~i infvte~’ partner depends not only on how many new

partners are chosen but also on the manner in which those partners are chosen.

There is a wide variation in the rates that sexually active peopie and needle-sharers

change partners (see Fig. 63 in Section Vi.). A small core of Hl\-infected, very

sexually active people can drive the epidemic.

Most models for the transmission of venereal disea>es (Hethcote and Yorke,

1984; Anderson et al., 1986) have assumed that all partners are picked at random

from the pool of available partners. This assumption !eads to the proportionate-

mixing assumption that the pel year probability of someone with I partners per year

picking ,~n infected partner with j partners per year is ijPJ/Pr, where P, i~ the

number of infected people with ) partners per year and PT is the total number of

partners picked per year. These modeis ~~lsoassume that t!~e probablltty of infection

per partner is the same. Howover, it IS clear that these assumptions are overly

simplistic.

In our models, we assume that an average probability of Infection can be

assigned to each contact. This assumption may not be sufficiently accurate to

predict the spread of HIV and addition~l factors may need to be included in the

model. For example, the probability of infection might depend strongly upon the

strain of the virus on the he~lth of the partners

There is a tendency for people with fewer partners to have more contacts per

partner than do people with many partners, There is also a bias of Ilke toward Ilke,

so that people with few p,~rtners tend to choose partners wl~o also have few

partners. Adding these biases Into the Anderson et al. model leads to substantially

different predictions from their random mixing model with equal risks
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Another aspect of behavior is that most sexually active people, both

homosexual and heterosexual, move in and out of stable partnerships (Kolb, 1980).

They may go into the dating pool and have a number of short-term relationships

with a small number of contacts per person before forming a new partnership, or

they may go directly from one partnership to the next (with OJ without some

overlap). 5exual partnerships have a wide variation in their dllratiorl. The duration

of each par-tpership depends on the sexual-activity groups of the partners involved.

The more sexually active people in the dating group form shorter partnerships than

the less-active individuals. A sin~ilar dependency holds for the duration of

abstinence periods. The duratiGn of the longer-term partnerships tends to increase

with age. A recent model for the spread of AIDS by Klaus Dietz \)988) Incorporates

some of these {low ideas using survey data of the West Germany population

Also, a fraction of the population maintains Iongterm retatlonshlps and then

has a certain number of outside partnerships. The risk to indlvidl JIS from longer-

term relationships depends on the outside partne~s or the previous partners of their

mates. Some possible be!~avior classes are shown in Fig, 2.1.

Although the data are poor at this point, the Infectiousness of a contact may

depend on the type of contact (man man, woman man, man wolnan, anal genltat,

oral-genital). infectiousness also depends on other cofactors such as venereal

diseases and the use of protective devtces (condoms, nonoxynol 9) We need

estimates for the prevalence of these cofactors, how frequently protective devices

are used, and how much behavior can be influenced by factors SUch as cducatlon,

knowiedge that a partner or oneself is Infected, and fear of Infection Also,

individuals with higher risk behavior are more likely to seek testing and discover

their Infection than are those Involved only lr~ low risk behavior As PtJbtlt

awareness increases arm more people know they are Infected, we speculate that the

resulting drift toward safer s~xual practices will slow the spread of the VI’US

“~he infected -spn Jse studies (Fljchi et al , 1987) and the African epldemlc

demonstrate that the vlrlJ\ can spread thro~Jgh a heterosex~Jal network Growing

evidence $uggest$ tl, at the ftlst heterosex~Jal spread lr~ Africa 15partly d~Jt! to a I]lgh

prevalence of cofactors, such as qen~tal ~Jlcers caused by chanchrod>, whlcll rn~y

greatly increase both Infectlouwess ~nd s~Jsceptablllty In the developea world,

such severe cufactors are vlrt(Jally norlexlstent }iowever, other co fclctor~ ar.?

present, such as gorlorrhed, syphllls, and Ilerpa, that may lrlcrea5e trarlsnl15\lorl

rates Iessdramaucatly. Without data on lr~fectlo[Jsness, with and wltho~Jt cofactors,

male-to-female and female to mate, It 1$Impossible to tell wl~ether or I)ot a self
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+

0=

An individual who picks partners at random; most
partners also pick at random and have few
contacts/partner.

An individual who, when dating, has few partners and
few contacts /partner; most partners are also daters,

An individual involved in medium-term relations with
a few partners who have similar behavior.

Long term relationship +

Long-term relationship +
from a high-activity class.

affair.

random partners picked

Example of a contact network along which HIV could
spread from a zexually active infected (E) to an
Individual in a steady partnership (C),

Figure 2. f Different indfvduah (indicated by circles) may halve very different
sexudl contacts (/nd/cateci by the //nes).
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sustaining heterosexual epidemic will occur in the United States. The few current

heterosexual AIDS cases are primarily driven by the epidemic among homosexual’j

and IV drug users. A slowly growing heterosexual epidemic could be masked by

cases due to contacts with these groups. It is unlikely that models can distinguish

between these two possibilities without estimates of transmission probabilities

from partner studies (e.g., Fischl et al., 1987; Padian et al., 1987).

Although approximately the same number of men as women are infected with

HIV in central Africa, and in some groups of military recruits in the United States

(Burke et al., 1986), this fact does not imply that the virus is transmitted with equal

efficiency between men and women, even in the presence of cofactors (May and

Anderson, 1987). The numbers of partners that each has may also play a big role.

The infected women may have had, on the average, far fewer partners than the

infected men, but there may be a pool of il~fected prostitutes with whom many men

have contact. Also, the presence of other STDS may be a more important cofactor in

a heterosexual transmission network than in a homosexual network.

Consider HIV transmis~ion through a simplified heterosexual network, where

one male infects one female, who in turn infects another male,

and a simplified homosexual network, where each male Infects one more and all are

astumed to engage with equa! frequency in both insertlve and receptive anal

intercourse,

(1
1

and where the trarlsmlsslot~ (Irlfectivlty)

I!, for man-to woman (receptive),

1~,for womamtoman (Irlwrtive),

u, for man to man (rec~ptive), ar~d

(i, for man to man (Irlsertrve),

II
1

rc~tesare
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per link of ~ = 2~r~l / (~r + jll). For the homosexual chain the transmission routes

are in paralle! and the average transmission rate per link is a = (ar + al), A slightly

more realistic model, where each person can have more than 2 partners, and for

which the average transmission rate is somewhat modified, is discussed in

Section V.A.

If, as some have proposed, in the absence of other cofactors such as STDS the

probability of beii~g infected during insertive intercourse is much less than in

receptive intercourse (that is, ~1 << ~r, al< < Ur), then the average transmission

rates would be ~ = 2~1 and a = ar. The heterosexual transmission rate would be

governed almost entirely by W-+M, the insertive infectability, whereas homosexual

transmission would be driven by the faster receptive transmission r~te. Thus, the

most effective strategies to slow tl~e epidemic in the two transmission networks

might be quite different. For example, suppose that sperm icicles such as

non~xcnol-9 were found to be mule effective In reducing [)1and UI than in reducing

O,or ar. Under this scenario, the use of spermicides could have a dramatic effect on

the heterosexual spread but only a minor effect in the homosexual network where,

for example, condom~ may be necessary to reduce both u, andur.

Also, be’ause other STDS may significantly raise the insertive infectivity \ll from

a woman to a man, one of the most effective strategies of slowing the epidemic in

the heterosexual network may be to launch a major campaign to reduce the

incidence of other STDS, The recent dramatic increase (approximately 29V0 per year)

of syphilis cases in the United States has been attributed by some to the transferring

of STD educational and treatment dollars to fight the AIDS epidemic This transfer

ri~ay be a counterproductive approach ar~d may result in a faster spreading

heterosexual epldemlc, Once the relative in festivities are approximately known,

then the model will be able to give guidance In answering questions such as

whether It would be more effective to spend educational funds ui~til, for example,

90”! of the heterosexual contacts use condoms or to reduce the Incidence of other

S“rDs by 50(% through contact tracing and treatment

c. DRIIG USE

HIV IS transmitted by Waring needlw to Inject drugs. Partly beca~Jse many

prostlt(Jtes are dr~Jg users and partly because most drlJg ~Jser$arc hetero$ex\Jals, the

spread of HIV Infection In the needle sharing community IS seen as a major source of

HIV for the l!et~roscx~Jal cornn~iJnlty at Iargc Sonw Important q~Jt?stlor~s arc whdt

fraction of ttle populatlor~ erlg.lgw Irl needle d]drlr~g In dlfferer}t age groups and
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regions, how the drug users are distributed according to frequency of needle-

sharing, and how much bias exists toward sharing repeatedly with the same peopie

and against sharing with strangers (Ginzburg, 1984; Black et al., 1986). All of the

mixing questions raised about wxtial activity also apply.

D. POPULATION DENSITY

The results from serolog Ical tests conducted by the Department af Deferws

(DoD) on potential recruits indicate that the prevalence of HIV is highly correlated

with population density (Burke et al., 1986). There are a number of reasons for this,

each of which needs to be considered. Unlike many non-STDs (e.g., measles,

influenza), the rate of infection should not be strongly dependent upon the density

of the host; however, people in Iage cities are less constrained than those in small

towns. Endemicity also plays a role because the virus will be spread only when it is

present. Finally, physical distance creates barriers between people, so mixing may

be more r~ndom and homogeneous in denser areas. The spread of the virus into the

regions surrounding the major population centers is a diffusionlike process in which

the diffusion rate is a function of the population density.

E. ZONES

As nentioned above, isolation provided by distance provides another barrier

to the epidemic. Behavior may also be somewhat regional. For example, the

prevalence of shooting galleries in New York City may be a major reason why HIV

has spread more rapidly within the New York City drug community than in the

Calif~rnla drug using communities where shooting galleries are less common. In a

risk based drug-use model (as described in Section V. B,), the p~rtnership

(needle-sharing) mixing distributior~s would be different for New York City than LCS

Angeles, and the predictions would be very different. Also, to understand how

rapidly the HIV in fecticrn will spread into different regions of the country, we might

want to model how each region is connected to every other region by the

movement of people.

Infection through blood transfusions caused a wide geographic spread of the

virus, In the spring of 1985, before stringent screening measures were applied to

blood donors, 0.25% of the blood tested by the ELlSA test was seroposltivc (COC

1986). Infected blood led ta a widc?spredd scattering of HIV infections throughout

the United States, which might have a major impact on the future course of the

epidemic, even though o~Ily a tiny proportion of the population was in fecied this
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way. Today, most of the HIV-tainted blood in the (Jnited States is identified by the

ELlSA test; therefore, current blood-transfusion infections will have a negligible

effect on the course of the epidemic.

F. ETHNICITY AND SOCIAL GROUP

The number of AIDS cases that have occurred, especially those in women and

children, are disproportionately greater in the Black and Hispanic populations than

in the rest of the population (Rogers and Williams, 1987). The DoD data from

military recruits alzo show this bias (Burke et al., 1986). [t is not understood why the

infection has spread more rapidly into these populations. There are, however,

social barriers to contacts between different racial groups, so it may largely be a

que~tion of endemicity. In other words, once the virus is introduced into a group of

people, it can spread only in that group until a contact with a member of another

group is encountered. If there are not enough contacts between racial cjroups, the

virus can spread entirely in one group without extending into another. These

groups need not be only racial; any isolated group with few outside contacts could

experier,ce an isolated spread. For example, students at the same university might

form such a group. Lifestyle differences in these groups could result in different

parameter values for the other risk factors.

We may divide individuals within a group into two classes: social and

nonsocial. The nonsocial individuals interact only within their group, whereas the

social individuals have contacts both within and outside their particular group. This

approach has also been used to model other infectious diseases such as hepatitis

(Sattenspiel and Simon, 1988).

G. COFACTORS

Cofactors, SUCII as diseases and practices that cause ~kin lesion~ or impairment

of the Immune system, may influence a person’s susceptibility to becoming infected

and, once infected, that person’s infectiousness and/r. r the disease progression, As

yet the data on the effect of cofactors are poor, but ●~umerous cofactors including

syphilis, gonorrhea, herpes, drug use, and malnutrition have been proposed. These

cofactors are more common in some groups, such w individuals in urban slums, than

in others and could allow for more rapid spread in those groups than wo~ld occur in

the absence of cofactors. For example, infectivity estimates from middle class

spouse/pair studies may not give correct estimates when other venereal diseases are

preser~t, It may be necessary to take account of the distribution of cofactors in the

population to fully understand HIVspread.
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In central Africa, cofactors probably account for the rapid heterosexual spread.

Un*reated genital ulcers often caused by chanchroid, which are rare in developing

nations, greatly increase infectivity.
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Ill. DISEASE PROGRESSION

Studies of the long-term effect of the HIV virus on the immune system are all

reaching similar conclusions: HIV causes a slow but progressive decline in the

immune system. The rate of this decline varies from person to person, and some

people appear to stay on a plateau for long per; ods, Short-term upward

fluctuations in measurements of quantities such as the T-4 helper cells are often

observed, but most infected immune systems decline over the long run (Brodt et al,,

1986; Redfield and Burke, unpublished report; Melbye et al., 1986). Autopsies of

AIDS victims sl wv that HIV aiso croses the blood/brain barrier in a large percentage

(around 80%) infected persons and causes a wasting away of the brain; it is not

yet clear if this deterioration is a slow progression or if it happens late in infection

(Finkbeineret al., 1986).

When the immune systsm is sufficiently compromised or when the brain is

sufficiently affected, symptoms appear. Initial symptoms of immune problems

range from the very mild (so-called AI DS-reiated complex [ARC], or generalized

Iymphadenopathy, or even just poor health) to KS and the devastating

opportunistic infections classified as AIDS. Deterioration of the brain leads to

blindness and Alzheimer’s-like dementia. Eventually, death follows. It is not clear

what the appearance of KS has to do with HIV-stimulated immune-system decline.

KS may occur at any point more than 1 year after infection, independent of immune

system breakdown. It is much more prevalent in homosexual men from New York

City than in other groups. It is often not the eventual cause of death; the immune-

system dedine continues until an opportunistic infection Ieads to death.

A, TIME FRuM INFECTION TG AIDS

This picture of progre~sive imrnunesystem decline indicates that most infected

individuals eventually die frcm HIVinduc~d illness and that the probability that an

individual WIII develop AIDS depends ~n how long he has been infected. Both the

time from itlfection to diagnosis of AIDS and the time from diagnosis to death are

extremely variable, HIV Infected adults have developed AI13S in less than 2 years

and some have remalr~ed well for more than 8 years. The distr’l)utlon of times

between Infection and clinical AIDS IS orlly partially known because of the lor~g

times involved In studies of patients for whom an estimate of date of infectior~ can

be made (sucl} as hemophiliacs), the percerltages developing AIDS in any given year

after infection arc eithef still increasing or arc rcrnair~ing roughly constant, which
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leads to an estirnateof an average t.imeto AIDS of at least 8 years. A possible

distribution of times from infection tociini~al AID5 Is shown in Fig. 6.1.

Because it is such a widely spread dis?:ibution, any mudel that is going to

predict the number of infected persons, cafes of AIDS, and deathc must take into

account the wide variability in duration o; infections to ensure not only that

approximately the correct distribution of peop:e develops A;OS or dies, but also that

infected peoplu remain infectious for lengths of times that reflect the actual

infectious periods. A person who is healthy but infected for a long period has a

higher probability of infecting someone els? th~ri a person who develops AIDS

r~latively early.

Similarly, there is a wide distribution o{ times betwee,~ infection and death.

Death may occur immediately after diagnosis or more th~n 6 years later, with an

average patient lifetime of 12-14 months. !. I the future, these times will depend

strongly upon the effectivenew of therapy s:~co as !he use of AZT, Keeping track of

time since infection allows us to use “best guess” estimate> f~r these distributions.

Another effect of the long duration of i~lfecticn is tilat as infection progresses,

people will ascertain their seropositivity and change their bel]avior.

B. VARIABLE INFECTIVITY

lnfectiousl~ess of individuals carrying HIV varle~ as the course af the disease

progresses. In studies of iniected hemophillm and bicmd transfusion recipients,

few of their spouses have seroconver-ted soor~er than a vear before the Infected

individuals developed AIDS or ARC symptoms (Goeoert et al., 1987b; Fischl et al.,

1987). Thl$ time lag indicates that infectiousness IS often minimal until late In the

course of the Infection, However, some partl~ers have been known to c~nvert

immediately (Weisset al., 1985)

The infectivity may be related to the amount of free virus in the circulatory

system of an infected ir,dividual. Studies indica!r that the amount of free virus goes

lJp in the first few weeks after Infection (Fran ciset al., 1984; Sulahuddin et al., 1984)

and then goes down ,1s antibody response occurs, remaining at very low levels for

year>, There may be ~poradic bursts of frti~ virus and, hence, infectivity in these

intermediate years because of other challer~gc$ of the immune system. As the

immune system co~lap>es ir~ the year or so before ~\lD5 develops, viral counts return

to high levels (Robert Red f~eM, private communication; l.ange et ai, 1986). ‘This

progression is schematically shown in Fig. 31
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figure 3.1. Schematic cf the in fectiousrrew of a sexual contact with the same
icdividua/. Initially, the virus quickly multiplies but then is suppressed by the
immune system. Towards t ~e end of infection, vira/ counts again become high,
coincident with immune-system breakdown. This in factiousness curve is based on
re/ative ~mounts of H/V in the infected individual. Also, spouse/pair studies indicate
the the infectiousness of an individua/ mu$t be /ow during the first few years after
the initial immune response.

It is clear both from the infectivity stuciies of Grant et al. (1987) and Padian et

al. (1987) and from our numerical studies that the chances of infection from a single

sexual contact must be quite low (less than about 0.01) for most of the duration of

infection, or el;e the virus would have spread much faster than it has. If the initial

infectious pcrlod dues exist, it is important, that it be well defined for infected

individuals with many contacts because it has a l,~rge effect on the rapid-growth

phases of the epidemic. This effect is especially the case when a disproportionately

large percentage of infected people have only just become infected.

Such a radical time variability of infectiousness raises an additional possibility.

We know that the n~mber of infected people has grown rapidly during the early

stages of the epidemic with doubling times significantly less than a year. It may be

that infection has primarily been transmitted from the infected to the noninfected

in the early time interval of roughly 2-6 months, The period of low infectiousness,

0.7-5 years in Fig. 6.2, may contribllte to fewer total infections. The periods of

increasing infectivity, 1-3 years before AIDS, have a reduced relative contribution

because of the rapid gtowtfi of the infected population during the low-infectious
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period. This reduced contribution n~aybeespecially true because the people with

large numbers of partners were infected first and could have encountered many

people during the first period. However, as the growth of the epidemic slows, and

the epidemic moves into groups with Iessthan 1 partner per 6 months, contacts with

people in the later disease stages would become the primary transmission route.

Because the disease iz much more infectious in the later stages, widespread

screening and voluntary testing to identify the HIV carriers (before they enter this

stage) will be more effective than if the infectivity were constant. Any costibenefit

analysis for testing must take variable infectivity into account. Changing an

individual’s behavior before he or she enters this very infectio~s stage could be one

of the most effective means of slowing the epidemic.

c. CLINICAL MANIFESTATIONS

Models could differentiate between the various clinical manifestations of AIDS

based on different conversion probabilities. At this time we do not differentiate

but have a lumped conversion-probability distribution, which peaks between 7 and

10 years and assumes every infected individual eventually converts to AIDS. The

conversion time may be longer in healthier and younger populations, and medical

advances may lengthen the conversion time.

D. GENETIC VARIATION

The genetic variability of HIV DNA sequences indicates that the virus is

mutating S to 10 times faster than an in f!uenza virus (Smith ct al., 1987.; Hahn et al.,

1985). The variability is due primarily to duplications, insertions, or deietions of

~hort segments and point mutations. The various strain~ may have dramatically

different resistance to vaccines or may lead to different etiologies (e.g., dementia,

KS vs PCP). If different viral strains have different etiology, then some strains may

eventually win out over others. For example, strains with longer i,~cubation timw,

those that are more infectious, strains such as HIV-2 that are not recognized by the

ELISA test, or those that least reduce the health of the infected person when they

are most infectious may eventually spread faster than other strains.
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IV. ANALYTIC FORECASTING

The accumulat~d ni:mber of AIDS cases diagnosed in the United States as

reported to CDC, A(t, is not growing exponentially but iswell approximated by

(4.la)
A([) = 174.6((– 1981 .2$’0 + 340 1 Z,.

for times t “ 1982.5. The rate of new AIDS cases per year, A’(t), is similarly

approximated by the derivative of Eq. (4.la), the quadratic equation

A’(t) ==523.8(f - 1981.2 )2’() (4.lb)

This polynomial growth is evident in nearly every CDC-defined category including

risk behavior (Fig. 4.; a), age, region of the country (Fig. 4.lb), and ethnic group

(Hyman et al., in preparation). The AIDS cases approximated by Eq. (4.1) are based

on the pre-June 1987 AIDS definition and do not include dementia and wasting

syndrome.

Because the cumulative growth of AIDS cases is cubic [Eq. (i.la)], the cube root

reference frame shown In Fig. 4.1 is a natural frame to identify changes in the

epidemic. Similarly the incidence data shou!d be studied in the square-root

reference frame. The data is also linear in a log-log reference frame where time has

been shifted so t = O corresponds to 1981.2. In the log-log reference frame the

exponents can easily be determined by the slope of a linear !east-squares fit. If the

data afe plotted in a log-linear reference frame, then extrapolation of future cases

becomes much harder and anomolies such as for region 9 in Fig. 4.lb are less

evide)~t.

Because the growth is polynomial [Eq. (4.la)], the doubling time is not

constant but is increasing Iineariy; setting A(t + td) = 2A(t) in Eq. (4.la) defll~es the

doubling time t~ == 0.26( t-1981.2) years. This increasing doubling time has led

some observers analyzing the data in a log-linear reference frame to incorrectly

state that the epidemic is leveling out, when in the cube-root reference frame (Fig.

4.1), it is clear that the trends have been consistent for the past 5 years,

The cubic polynomial growth can be explained by a wave of infection

progressing from populations with high-risk behavior into populations with lower-

risk behavior. For example, if individuals with risk behavior r (proportional to the

number of sexual partners or needles shared) are infected through interactions with

people of similar behavior and If the population is distributed as a decreasing

function of risk behavior [e.g., N(r) = No/(l + ar)”, where N(r) is the number of

individual with risk r], then the highest risk population is quickly infected, giving
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Figure 4. la. The + power of the CDC AID5 cases is linear in risk categories (1-5)
indicating an approximate cubic growth a(t-to)3. The risk categories are 1.
homosexual male; 2. IV drug user; 3. homosexual and IV user, mdle; 4.
hemophiliac; 5. heterosexual c&tact; 7. transfusion; 9. other or unknown.
the iags in reporting time have been approximated and accounted for.
analysis by C. Quails).
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Figure 4. lb. The + power of the CDC AIDS cases is linear in different regions of
the United States indicating an approximate cubic growth a(t-tO)3. The
metropolitan regions are 1. Northeast; 2. Central; .3. West; 4, South; 5. Mid-
At/antic. Region 9 is nonmetropo/itan and region O IS unknown, Note that the
nonmetropolitan AIDS cases in region 9 did not grow as a cubic until 1984. (Data
ana/ysis by C. Qua//s).
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rise to an initial transient exponential growth. This growth quickly becomes

polynomial as the saturation wave of infection moves into lower-risk (but still high-

risk) behavior and finally slows to an exp(l/t) growth rate (See Sec. VI I. B). The

‘ polynomial growth is analyzed in more detail in Colgate et al. (1987).

If C(T) is the probability that a person infected with HIV at time t-t has

developed AIDS by time t, and if l’(t) is the number of people infected per year with

HIV, then the cumulative AIDS cases reported to CDC satisfies the relationship

I

,,,

A(/) = p (.:(L)/ ‘(/ – L) (1L
(4.2a)

()

or

(4.2b)
J ()

where p is the fraction of infected individuals eventually rep.~rted to CDC as AIDS

cases. Thus p is the product of the probability that an infection will result in a

pre-1987.5 CDC-c!efined AIDS case (which excludes dementia and slim disease) times

the probability it will be reported to CDC. The probability that an AIDS case will be

reported to CDC is the product of the probabilities that it will be diagnosed and,

once diagnosed, that it will then be reported. Using estimates of C’(t), the

probability density function for conversion to AIDS, we can solve Eq. (4.2) for l’(t). In

these calculations we used p = 0.72 and the Weibull pro~ability density function

described in Section VI [Fig. 6.1, Eq. (6.1)1, unless otherwise stated.

Equation (4.2) is ill posed; small changes in A(t) or C(I) may cause large

changes in l’(t). We solved both Eqs. (4.2a) and (4,2b) by a least-squares quadrature

method where l’(t) was approximated by piecewise cubic I-!crmite polynomials

(splines). A(t) was extrapolated using Eq. (4.1) The calculated solutions agreed

within 5% when 10 to 30 piecewise polynomials were used. Below 10 piecewise

polynomials the approximation was too coarse, and above 30 the ill posed nature of

the problem created high frequency oscillations in thesolution

“ihe cumulative number of infected individuals l(t) was most sensitive to the

extrapolated estimates of A(t), the fraction of the infected population that

eventually i:, reported to CDC as ,41DS cases, and the most likely conversion time to

AIDS, wt’,ich we call I,, (C’’([,l) = O ) After the initial transients, l(t) was relatively

insel’jitive to the width of the distribution C’(t) about i~, The uncertainty that an

HIV In fectlorl wtit result in an AIDS case reported to CDC IS a linear factor and
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changes the estimates for the infected by p ‘, We now investigate the effects that

these uncertainties in each of C(T), the fit of Eq. (4.1) and the e~trapolation of

Eq. (4.1) have on the estimates for the seroprevelance of HIV.

Because so few people develop AIDS in the first 2 years after infection, it is

clear that today’s AIDS cases cannot be used to estimate the number of people

infected in the past 2 years with any accuracy at all. In fact, initially the errors in the

estimate for l’(to-~) explode proportional to the relative er~or in A(~)) times C ‘(I).

Here to is the maximum time at which A(t) is specified. More generally, a relative

error in I’(t(,-r) of

r, (L) IA(: ‘(L)II- (XI)II /(/{))A ‘(/(,)– I I 1

can be introduced and the relative values of A(to-[) will change less than u~ for

I - 0. In Fig. 4.2 we plot the solution lo(to-~) of (4.2) using (4.1). Also plotted are

the upper and lower error bounds, 1,’(to-~) = lo’(to-~)[l trl (I)], for VA = 0,01,

to = 1988. These error bounds for l(t) and l’(t) due to errors in the fit of A(t) are

small fort “ 1984 but gradually increase and explode between 1 and 3 years agn.

The upper and lower bounds 1, and 1.for l’(t), t ~ to, in Fig. 4.2 would result in

very different future values for A(t), t to, To reduce the error bounds on l’(t),

t“ tO, we must incorporate assumptions on behavior of A(t), t “ to, That is, to

estimate the number of in fecteds at time tO, we must first estimate future AIDS

cases for times up to t = to + [~. These extrapolations can then be used in Eq. (4.2)

to estimate the infected population l(t), fort to

Even though the cubic extrapolatiori in Eq, (4.1) closely agrees with the data

over the past 5.5 years, it IS purely an empirical flt to these data, This approxlmati,~n

is not based on transmission mechanisms and therefore does not include any effects

of behavior changes that are knowrl to have occurred, saturation or Infections In

certain risk gro~ps, the $creenlr~g of the blood supply, the infection 5tartlrlg in new

populations or any other of the major Irlfluences on the future course of the

epidemic Because the ur~de ‘ying tr~nsmlsslor~ dyn~rnlc~ are char~glr~g, we do not

expect the cubic to cor~tlnue to hold lr~deflnltely arid, I)ence, the tr<~dltlor~al

st~tlstlcal confidence bourlds are not an approprl~te tool to est~mate errors Ir]

forecastlr~g future AIDS cases Therefore, we have kept tl~c error analysis slmplc In

our Investlgatlons of tile 5erl>ltlvlty of ttle 5eroprrvC)lerlce e~tlmatc5 on the future

AIDS case projections, To allow for a relative error of t per wmr In the ratt~ of AIDS

cases per yfiar, we m~ll~lply [q (4 lb) by (1 k 1)(1 “)1{”) for t 1988 lr~ lIg 43 we
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Fi . 4.2a. The upper and lower error bounds/ +‘ and / ‘ for/’(t) from the inversion
?o Eq. (4.2) using the Weibull conversion time distribution of Medle et al. (1987)

Jexplode as t approaches 1987 when A(t) is not extrapolated beyon 1988.0. These
three est~mates for/’ pred~ct cummu/ative A/DS c~ses that agree w~!hjn 1‘% for t s
1988.

1,()

x

Tl:fK

F/g, 42b, The erro~ hounds for the cummu/At/ve number of /nfectecfs, l(t),
corresponding to the /ntegra/s of/’ I; I F/(j. dld
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demonstrate the sensitivity of the estimated seroprevalence on future AIDS

predictions by solving (4.2) for 1, with A,(t) = A(t)(l t. c)(’ ‘9*8).

To investigate the effects of the uncertaintiesin C’(t), we extrapolated the

AIDScases~sing Eq. (4.1) and compared the solutionsot Eq. (4.2) in Fig. 4.4f. “our

different conversion functions. (a) The Weibull distribution shown in Fig. 6.1, which

has a most likely time of7.5years andamedian time (C(t)= +)of8 years; (b)a

delta-function at 7.5 years (that is, everyone infected develops AIDS in exactly 7.5

years); (c) a step function that is 0083 for T between 2 and 14 years aad Ootherwise

(there is no most likely time; the median time is 8 years); and (d) a delta-function at

12 years. The solutions for the number of infecteds for the first three of these agree

within a few percent, as shown in Fig. 4.4.

2.5

x

1.5

1.0

(), ()

Tltlf?
Figure 4,3, Tbe new A/DS cases from E

!
, (4, Ih) were extrapolated with a mdxirnum

re/~tive error in the rate of new A/f) cases of t 10% per year after !988. The
curnu/dt’ve Infected population /(t) was then e.stlrmted for t 1994. Here p = O 72
and C’(I) ISdetined In F/g. 6. /

As the width of C’(l) approaches ~ero (that IS, a dultl~ function), then the

solut’on of Eq (42) approaches

(4 3)

This estimate can be

distributmns C’([), as

w,ed as a rough approxlrnatlol~ for l(t), everl for fairly wide

demonstrated In Fig 44 This approximation can be used to
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Eq. (4.1) and setting the reportin fraction p = 0,72, After some ~nitia/ transients,

%the so/utions are insensitive to t e shape of the conversion time distributions as
Ion as the most /i&e/y conversion times agree.

!
a. (solid line) Weibull; b. (shor;

das es) &function at 7,5 years; c, (dash-dot) step function, 2-14 years; d. (/ong
dashes) J-function at 12 years

estimate the number of infected individuals in January 1988. For example, if we

assume that 80% of the infected individuals develop CDC-defined AIDS and that

90% of these are reported to the CDC, then p = 0.72, If LA = 9 years and the

number of AIDS cases in 1997 ( = 1988 + IA) is 85°A of the extrapolated cubic

approximation (4,2), then the current cumulated number of infected individuals is

II174,6(19880 + 9- 191!12iJ t 34(I
(4,4)

We remark that if only 40% of the infected individutils develop CDC-defined AIDS

(as was thought a few years ago) then, even though the predicted AIDS cases are

the same, this approximation estimates that there would be 1,626,844 people

infected with HIV in the United States,

Although the number of AIDS cases for different ~onversion time distributions

in Fig, 44 agree, the length of time that the current AIDS cases have been infected

have very different distributions, Most of the AIDS cases diagnosed todoy were

infected 3 5 years ago, This time is shortw than the most likely time to convert to

AIDS becaute the HIV infected population is growing rapidly In Fig 45 we give an
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example where the HIV-infected population l’(t) is growing quadratically and the

most likely time to convert to AIDS is 7.5 years. The distribution of patients

currently developing AIDS, A’(t,t) , is the product of the two dashed curves and,

hence, is highly skewed toward the early conversion times.

The current most likely time since infection for current AIDS cases is 4+ years.

This most likely conversion time implies that we should soon see a slowing of AIDS

cases in transfusion recipients. Also, the sexual behavior changes in 1983-84 in the

San Francisco area should just now be reducing the growth in the homosexual cases.

Note that, even when the time since infection is known, A’(t,~) is insufficient to

determine C’(t) unless an esumate of I’(I) can be made. For the transfusion-infected

patients, the shape of I’(L) could be ascertained if the contaminated fraction of the

blood supply was known as a function of time.

to - 1988 ,’
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years from now. The only way to make reliable long-term predictions is to include

far more detail on the epidemiology and sexual behavior through full-scale

computer models.
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V. SIMPLIFIED MATHEMATICAL MODELS

A complete model of the spread of the AIDS virus in a sexually active and

lV-drug-using community must acco~~ntfor the complicated interactions between

people. However, one must begin by uncle ..’anding the behavior of simple models

before going on to explore more complex ones. Two different approaches to this

modeling have been developed. One is based on ascertaining the risk to an

individual (Hethcote and Yorke, 1984; Anderson et al., 1986). The other is based on

population growth models in which individuals form and break partnerships. In this

approach, paired individuals become infected through multiple contacts when one

partner is infected but remain protected for the duration of the partnership if both

are uninfected and also cannot become infected between partnerships (Dietz, 1988

and unpublished report). In the risk-based models, the population it easily stratified

according to the amount of risk individuals incur, but they do not model well the

risk (or protection) of Ionqer-terrn relations. On the other hand, the partnership

models are more difficult to stratify and thus account for the wide variations in risk

behavior within the population. In this paper, wt are primarily concerned with

modeling HIV spread in high-risk populations, so we use the risk-based approach.

We do, however, account parti~lly for partnership dura,lon by allowing a variable

number of contacts in each partnership.

ill this section, we describe several models for the sexual spread of HIV in a

population structured only according to rate of acquisition of new partners; sin~ilar

models would hold for needle-sharing associated with lV drug use. We begin with ,)

model that neglects all heterogeneities in the susceptible and infected populations,

present a similar model for heterosexual spread, address the variations due to

progression of Infection, and finally spilt the population according to risk behavior,

Parameter estimates for these models will hQ discussed lr~ $ectlon VI and their

behavior will be explored In Section VII.

ThQ models discussed here do l~ot incorporate bchavtor changes, although

that is casi’y added, We assume that this populatlorl would be stable if HIV were

not present, with rnigratlon ar~d matur~tior~ Into the group b~lancing deaths ~r~d

aging procc’sses that remove people from the group, WQ assume there is no

lmrnunlty, 50 all ur~lnfectecl members t~re susc~ptlblc to lr~fcctlor~. Or~ce Infected, a

persor~ remains infected, infectious, and sexually active until AIDS lr~tcrvenm lr~ all

but a simple l~eterosexuat model we do not dlstlr~guish the sex of the members of

this at risk community The assumptions involved In tl~e developrner~t of tl~ese
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tnodels will be described in more det~!l in a later report where a derivation of the

probability-of-infection function isgiven.

A. T-MODELS

In our models, we divide this at-risk community into uninfected susceptible,

infecteds without AIDS, and diagnosed AIDS cases. We assume that, before the

ntraduction of the AIDS virus, there was a balance between a constant maturation

and migration rate into the community and a constant rate per individual of

retirement or death out of it; these processes continue in the presence of AIDS.

Susceptiblvs become irlfected through sexual contacts or !V needle-sharing with

partners whom they choose randomly, at a fixed rate, from the susceptible and

infected portions of the community. Infected individuals eventually develop AIDS,

become sexually (or needle-sharing) inactive, and die at an accelerated rate.

[n the simplest mode( where

t:

s(t) :

l(t) :

A(t) :

Al(t) :

N(t) :

p :

h:

Y:

i:

c:

r:

so :

we have

time,

number of susceptible individuals,

numtwr of infected individuals,

number of AICS ~ases,

accumulated number of AIDS cases,

number of susceptible and infected individuals without AIDS,

death rate of individuals without AIDS,

death rate of individuals with AIDS,

rate of dev~loping AIDS of infected individuals,

probability of infection from a sexual contact with an infected,

average number of contacts between sexual partners,

average number of new sexual partner~peryear, and

popul~tion size before the AIDS virus was introduced,

(/4/). .. ..- A!/)tS(/) ~~(y I \l)/(1) ,
(It

b

(5.1)

(1A(I)
y/(/) - /iA(/) ,

({1

(1A ,,,(1;

/iI(l) ,
i11
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with

l(t)
A(t) = iir —

N(t) ‘

N(f) = s(i) + i(t)

and where A(t) is the rate of infection per susceptible. (Note that we changed

notation from Section IV where l(t) and A(t) are cumulative quantities, ra her than

current numbers as they are here.)

This model portrays a community in which people mature or migrate into the

susceptible community at a constant rate pSo. People withcut AIDS die (or become

inactive) at a constant rate, with p-l their averacy !ife expectancy. Infection occurs

through sexual contact with an infected partner. Partners are chosen at random,

from all susceptible and infecteds, at an average rate r par year, so that the

probability a partner is infected is the fraction of in fecteds in the population.

Infecteds develop AIDS at a rate 8, and AILW cases have a decreased life expectancy
&l

This simple model has been presented atv! analyzed by many authors for the

spread of various sexually transmitted diseases, i~rll!diitg AIDS (see, for example,

Hethcote and Yorke, 1984; Anderson et al,, 1986).

Equation (5. I) can be modified to c~odel purely heterosexual spreading by

splitting the population according to scx and accounting for the partnership

balance relationships. These balances are iwcessary to account for situations where

there are not ei~ough women, and men can~ot have as many partners& they might

like, and vice versa, A symmetric model tt,at s~tlsfies the condition that the number

of female partners equals the

sol = (wO, mo) :

s’ = (w(t), m(t)) :

11 = (W(t), M(t)) :

At = (wA(t), MA(t)) :

r’ = (rW,rm) :

1’ = (iW,im) :

numberof Old;@ partners, and where we define

initial populations of women and men,

susceplibles,

in fecteds,

Al DS cases,

average detiwd nurnl)el of female (rw) or male (r,n)

partners the men or women have per year,

infectiousness:> of a contact vvlth a woman (iw) or a

man (irn),

again gives the system in Eq. (5.1). Hwe wv h;~ve used the superscript T to Indicate

the transpose operator, The rate of Infectiur! per susceptible is
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A(O = (i,,,hf, i,uW)Tcrn,r,J(S +f)T ry’l - 1
(5.2)

and the product AS in Eq. (5.1) isdefirwd as (AI w, A2m)T.

The initial growth of infecteds in both of these models is exponential, with

l(t) = IJ?’-J’

where a = icr for the model in Eq. (5.1) and a =

model in Eq. (5.2).

crWrm(iWimwomo) +(rT.SoT)l for the

The simplistic choice of A in Eq. (5.2) illustrates the complexity introduced by

balancing male and female partners. Adding additional structure, such as risk

behavior or age, complicates the balance equations even more. Currently, there is

very little data on male/female mixing patterns. If the solutions are sensitive to the

different balance equation assumptions, then more data will be essential.

These two models assume, among other things, that all contacts with infected

persons are equally infectious throughout the course of infection. As discussed in

Sections 111.B and VI. B, there may be a wide variation in infectiousness as the disease

progresses. The constant rate of progressing to AIDS imposes an exponentially

decaying distribution of times to AIDS, However, cohort studies have found that

the probability of getting AIDS increases with time since infection for at least the

first 7 years (see Section VI. A). Thus, a decaying distrib’dtion is a poor

approximation.

If we include time since infection or AIDS, then variable infectivity and the

distributions of times from ii] fection to AIDS and of times from AIDS to death may

be explicitly modeled. Following Anderson et al. (1986), we break down the

infected population l(t) according to the time since Infection, [, l(t,O) is now the rate

at which people become infected and I(t, i) has the units people/year. Similarly, we

distribute AIDS patients according to time sirlce AIDS, Defining

I(t, t) : distribution of in fccteds according to time since Infection where
I(t, [) IS the rate of people infected per year ( years ago that are still
infected at time t,

A(t, r) : distribution of AIDS cases occordlng to time since AIDS began,

i({) : probability of In fectiorl from a contact with a person infected I year~
ago,

y(l) : rate of developing AILM at a time I af~er infection,

H(l) : death rate at tlmc I rifler AIDS starts,

we have the system

●

✎
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dS(t)
— = @o - s(f)) - A(f)s(f) ,

iit

/((,0) = A(t)S(f) ,

i)/(t,L) d/(&, L)
—+— = -(y(L) + ~)l(f, d ,

at dL

I

m

A(t,O) = Y(L)/(l, L)dL ,
0

(5.3)

itA(t, L) dA(t,L)
—+ — = –fi(L)A(t,L),
at dL

I

w
A(f) = K /(/, L) i(L)dL ,

N(t) ~,

I

w
N(I) = s(t) + /( f,L)dl

()

and

(1A,/,(/)
— = A((,())
(it

The infectivity, i(t), is an average over all individuals infected at time t and is

discussed in more detail in Section VI.B. Although we hav~ not done so, it would be

easy at this point to vary c and r with time since infection and to thus account for

behavior changes caused by infection. For transmission in a heterosexual

population, the model in Eq. (5.2) is generalized in the same manner, with the

infecteds, Ir, divided according to time since infection and

time since diagnosis.

B. RISK-BASED MODELS

So far, the models presented do not treat variations

the AIDS cases divided by

in risk behavior between

different people in the group, These models would be sufficient if the variation in

risk behaviors were not large and did not play such a significant role in the

epidemic, However, surveys of risk behaviors in tbe homosexual communities

demonstrate that the variance in the number of sexual partners per year is large,

For example, the data for London in 1985-86 have a mean of around 25

partners/year and a variance of roughly ’75(see Section VI, D),

In this epidemic, it is significant that the people with many partners tend to

become infected first and then become carriers who infect less-active people, This
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distribution can have a marked effect on the course of the epidemic and on which

risk group is currently at highest risk of infection.

To model risk behavior, we suppose that the population can be distributeci

accord+ng to their numbers of new sexual partners per year. People mature into a

fixed risk group and leave it only at death. Letting

r: number of new sexual partners per year,

S(t,r) : distribution of susceptible according to the number of partners per
yea r,

l(t,r, ~) : distribution of infecteds according to the number of partners per year
and the time since infection,

c(r, r’) : total number of contacts in a partnership between people with r a~d
r’ partners per year, and

So(r) : density of people with r new partners per year before the AIDS virus
was introduced,

we have the model

iJ.S(1,r)
—.

iJl

I(l,(),r)

()/(/ ,1,?-) dl((, L,r)
—l—

i)t ih

A(f,())

dA(/,L) (IA(/,L).—._.— I -.-—
01 {)L

{1A ,,,
-—

(h

. rN(/)

and

p(ts(,(d – S(/,r)) - A(/,r)S(/,r) ,

A(f,r)i’$(/,r) ,

–(Y(L) i lJ)/(/,L,r; ,

(n !s)

H
Y(L)/((,L,~)(/L4/r ,

() ()

-/;( L)A(I) ,

!,, (,,

H
y(l) 1{1,t,r)$luir ,

(1 ()

I

,,

rN(/, r) ~/r
(1

I

!,,

N[/8r) S(l,r) t /(/,t,r)ff~
(1

(5.4)

●

✎

We must still define A(t,r). We discuss below ”two posslblc choices, random partner

choice and a bias of people towards partners like themselves. Note that now S(t,r)

and So(r) have the units peop!~ time/partners and I(t, t,r) has the units

people/partners
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ll~ndom Choice

[f we assume that partners are chosen at random from the entire population,

then A(t,r) is given by

m
II

m
A(f,r) = —~- c(r,flk’

(5.5)
i(L) /(t, L,l%fL dr’

<rN(t)> o J“

This model, except with no differences in partnership durations and no variability in

infectiousness (c(r,r’) and i(~] constant), was first proposed by Anderson et al. (1986).

It assumes that the average r-r’ partnership is sufficiently short and infectivity is

sufficiently low that the probability that a person has already becom~ nfected in

the partnership is small, i.e.,

Furthermore, the epidemic cannot grow so fast that the chance that a partner is

infected becomes significantly different during the course of the partnership from

an unmatched person from the same risk group. Anderson et al. (1986) show that

the initial growth of this model is determined not by the average number of

partners/year, i, but instead by P + cr2/i where U* is tile variance about. this mean.

They then proceed to approximate the model in Eq. (5.5), by replacirlg r with

T + 021F.

Biased Partner Selection

The A(t, r) given by Eq. (5.5) does not account for the fact that people do not

choose partners at random from all groups but instead prefer partners of a certain

type and choose them when available. Ideally, the partner selection in any model

should be based on sociological data, This question will be discussed In more detail

in a later report; as a first step towards addressing this question we present below a

model with a stronq bias of people toward partners of similar risk behavior

If mixing occurred only with people from the same risk group, then the virus

could not spread between groups and the system in Eq. (5.1) would osscrlbe

separate epidemics for each value of r. However, this perfect Isolation is unrealistic.

The mixing between people of similar, but not identical, nsk behavior leads to

diffusion of the virus from one group to another. Under the wsurnptlon~ described

below, the rat~! or infection of a ~usceptible with risk behavior r, A(t, r), IS

approximated by
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( dN(l, r) i?N(I, r)
1–~5-— +r—

N(f,r) & dr2 ) (5.6)

where

I

C(r, r) m
~(t,r) = — i(L)/(/, L,r)d L

N(t,r) (,

This expression for A(t, r) is derived as follows. Under the same assumptions on

partnership duration, infectivity, and epidemic growth rates as mentioned above,

A(t,r) can be approximated by

I

!,,

A(t,tj :: p(f, r,r’) k (t, r,r’)dr’
o (5.7)

I

!,,

k ((,r, r’) = c(r,r’)
/(/, L,/)

l(l)— (11

() N(I, r’)

Here k(t,r,r’) is the probability of being infected by a partner of risk r’, The

partnership function p(t, r,r’) defines the rate a person of risk r forms e sexual

partnership with a person of risk r’. For random

product of the rate of partnership formation, r,

partnerships that are with people of risk r’, F(r,r’);

\) l(l!,(,,,,,,(’’r””)~’,(,,,,,,,,,l(’’’)’)‘

partner choice, this rate is the

and the fraction of available

(5,8)

l“
,wt(lw,,(r’”~

r’N(/, r’)1. IN(() ‘ I 1

To account for partnership biasing, Fr,lndom (r, r’) is determined by the fraction

of partnerships from r’ that are both available and acceptable, Thus, If partners of

risk r’ are accept~d by people with risk r with a frequency f(r, r’) and partners of risk r

are a~cepted by people vJlth risk r’ with frequency f(r’, r), then the fraction of

partnerships avall~blc and accept~ble to a pe~son of risk r IS

II

,,

I

I
/$’(/,,’) /(l’,,)/{/,1’)/’N(/,f ‘) I“’/(f,/’’)/(/”,)l,f’[/,/“),/)”

II

Tl~ere t>, l~owevt’r, ~ cor~str.~ll~t 01) p(t, r,r’) tl~u total rate tl~at r r’ partr~erslllps

form, N(~.,r)p((, r,r’), mu~t be cqudl to tl]u tut~l r~te tl~~t t’ r partl~ursl~lps fornl Ill
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addition, F(r, r’)must be discounted to take account of the partner choice that a

person from r’ has at that time. As an approximation (which may not ensure that

people from r have exactiy r partners/year), we take an average, and let

r /lr’, r)flr, r’) r’fV(t,r’)
p(t, r,r’) = ~,

(1
r“fV((,r”)J Iflr,r’’)flr’’,r) t /(r’,r’’)/tr’’)ldr”r” j

()

(5.9)

Substituting Eq. (5.9) into Eq. (5.7) defines h(t,r).

The system in Eq. {5.4) with this choice of A(t, r) gives a model that allows the

implications of a wide variety of partner-selection mechanisms to be investigated.

Different acceptance functions, f(r,r’), and contact functions, c(r, r’), can model

different social behaviors and forecast quite different futures for the epidemic. For

example, f(r,r’) = 1 implies random partner selectlon, and f(r, r’) = Ofor r J r’ and 1

for r= r’ implies a person and hls or her partner always has the same number of

partners.

Diffusion-Risk Model

We wa~t to consider the effects of a strong selection preference toward

partners from similar risk groups, with more-active people less dlscriwlnating than

less-active people. As a first step in this direction, suppose that partners are chosen

wltt~ln r f ~rr~, according to a Gaussian partnership acceptance function

/t/,,’) ,’ “ “’:!’’”:’ (510)

In Section VII. B, we compare calculations with this cllolce of f(r,r’) to the random

mixing model, when variations In I are Ignored (I({), y([) and ti(~) are constant) If

we look at the limit as thi~ acceptable ral~ge gets small (r *O), and keep only the first

correction in II, we obtalr~ the dlffuslon expression In Eq (5 6) for A(t, r) for all r + I J

(see Colgate et al., 1987, for more det~lls),

If we consider only the Initial few years of the epldernic, when few AIDS cases

have yet occurred, birth and death processes can be Ignored and we c~n assume p -

0, y([) --~ (), Approxlmatlng the dlstrlbutlon N(t, r) = N(r) by NCJ(2r t r)fi as In

FIq. 6.3, neglecting varlcrtlons lr~ lnfectlvlty, I(I) = I and takll;g a single contact per

partner, c(r,r’) = 1, then In Fq (5 4), with A(t,r) given by Eq (5 6), reduces to a sImplc

diffusion equation for the fraction In each grol~p infected

(5 11)
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where

u(t, r) = 1(/,r)fV - ‘(r)

There are solutions of this diffusion equation (5.11) that have the form v(t, r) =

V(rt), (with any arbitrary time shift, t -+ t + to, allowed) and numerical simulations

show these similarity solutions are strongly attracting (Section VI I. B). Note that

considering only the fraction infected in each group, v(t, r), can give a misleading

picture of where the epidemic is spreading because there are so many more people

with lower-risk behavior. That is, a small fraction of infected low-risk individuals

may be greater in absolute numbers than a large fraction of infected high-risk

individuals.

Neither totally random choice nor biased choice only from neighboring risk

groups captures the true behavior of people. In the absence of data, however, it is

worthwhile to postulate these two extremes and compare the epidemics that each

predicts, but we must also look at mixtures of the two behaviors, In the simulations

presented in the next section, there IS an enormous differenc~ between the two

extremes, Sattenspiel (personal communication) proposed th~t a simple way to

look at mixtures of the twu behaviors is to take a linear combination of random plus

setfpreference. Jacquez et al, (in preparation) have used this idea to examine the

transition from pure random selection to pure self-selection using a model with

four discrete activity levels. They see a large difference in epidemic growth rates,

the time to spread across the different activity groups, and the endemic state when

the pure self selectlon term dominates (over 90”4).

In sexu~lly active heterosexual communities, there may be a very different

mixing pattern from the ones described here. Also, differences between male and

female rnlxir,g patterns must be awssed, Data on clients of prostitutes should be

gathered and examined to understand not only the activity ievels of these cilents,

but aiso w’hat thclr nonprostltute partners are Ilke,

Even wlthln the male homosexual and the IV needle shar~ng communities,

twhav~or pattern$ are not this simple Bei~avlor changes over time, and people wltl~

many partners one year may have only a few the next, or vice versa Social group$

wltl~ll~ wi~lch mtxlny IS stror~g, and betwcc’n which It IS weak, may cause low a~tivlty

people III one group to be lr~fcctcd iwforc high activity people In another group.

Thc soclai/nor~soclal mlxlr~y bvi~~vlors rnodeicd by Sattcnsplcl (1987) ar~d

Sattcnsplci ar~d 51mor~ (1988) may also piay an important role III ti~c s~read of ti)is

dl~ea~e Models wltl~ ~ v~rlety of rnlxlng assumptiol~$ neud to be dev~loped ar~d
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coimpared, both with each

ascertain what complexities

are not.

other and with behavioral and serological studies, to

are really necessary for modeling HIV spread and which

C, REDUCTION OF THE RANDOM-CHOICE RISK-GROUP MODEL

Under the assumption that migrations and the natural death rate are small and

that the contacts between individuals go as c(r,r’) = 1 + h(r)h(r’), where h(r) -+ O as

r-+ ~, the system in Eqs, (5.4) and (5.5) can be simplified by analytically calculating

the distribution of infecteds in risk and eliminating the risk coordinate. Besides

being faster to solve numerically, the simpler system has the advantage that it is

accurate in fhe r-direction and discretization errors in r are eliminated, To derive

the reduced equations, we first define two functions of time, y and z, which satisfy

the equations

,,,

II

,,!

l(l) ~/(/,1,~)(/~f/L
(Iv(l) 1) (1- ..—. —.—-.

(//

I

,V(o) () ,!,,

H

!,, ,,,

ris(l, r)(ir I rl(l,l, r) {lrtl~
J [1 () ()

II

,,, <,!

l(l) r/1(r) /((,1, /)f//t/l
(1,’(1) 1) () —— .4[1) () ,
(//

I

,,,

H

,,, !,!

r s(/, r)(/r I 1,/((,1,/) (/r(/l
() [1 ()

and note that

(512)

(/,)’(1)
\(/,/’lr

(1,’(/)
I //1(1)

t11 (//

If we assume

(5 13)

S(l, r) ,s((),/}(, ““) “’’’’:’” (5 14)

and differentiate with respect to t, we recover the first equation in ~y~tern (54) with

(5 1’))
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which we call g(y,z). If we let G be the total susceptible population, then

,0

(;(y,z) = ‘ S(o, r) f’””‘y --“h’r)zcfr,Io

and we see that

(5.16)

- irG(v,d
g[y,z) = —

*’
Multiplying the equations for l(t,O,r) and l(t,~,r) in the system in Eqs. (5.4) and

(5.5) by r and by rh(r) and then integrating over all r, gives equations for the other

pieces of these right-hand sides. If we define

I
!m

.!’((,L) rl(l, L,r)flr
f)

and

I

,,,

11(/,1) r h(r) 1(1,t,rhfr ,
()

then

11//
.1(/,()) - -— ,

(1/

11( )
(U;

/1(/,())._,-.. .—
(// (IJ

dl(l,l)A(l,l)
I - y(l).l ((,1’ ,

(M 1)1

and

dll(/,1) dfl(l,l)
!—.— y(l)u(l,l)

1!/ (!1

The equatlon$ for y(t) and ~(t) CCIIIthen k rewritten as

I

,>

l(l) t(/,l )(/l
I/,y(I) ()

, J’(()) () ,
(1/

I
,,

t(/, lh/l I //(,V,.’)

(5.17a)

(517b)

(5 l%)

I()
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m

i(b) u(/, L)dL
d.dt) (1—= , <0)=0

\

dl m
x(t,r) df + g(y,z)

o

(5.18b)

Initial conditions on x(O,t) and u(O,d come from the initial infected distribution and

the definition of x(t, c) and u(t,t). The numbers of susceptible, infecteds, and AIDS

cases satisfying Eqs. (5.4) and (5.5) can then be recovered from the solutions of this

s~mpler reduced system.

In the next section we discuss parameter choices for the models presented in

this section. Numerical results are presented in Section VII.
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V1. MODEL PARAMETERS

The models discussed in the previous section contain a number of parameters

that must be estimated in order to make calculations. Some of these parameters

can be estimated fairly well (p, y, or 6(1)), but for most of them only partial

information is known. We wish to explore the effects of parameter changes, within

plausible ranges, on the solution of these models. In this section we discuss the

information that is known about these parameters and the possibilities that we

explore in the numerical simulations presented in the next section.

A. RATE OF DEVELOPING AID’

The fraction of infecteds developing AIDS within time t since infection has

been estimated for the first 90 months for both the San Francisco Hepatitis B cohort

(Hessol et al., 1987) and the Hersey Iiemophiliac cohort (Goedert et al., 1987a).

These estimates show that small numbers of adults begin developing AIDS 2 years

after infection, with a larger and larger fraction developing AIDS each year up to

the end of these studies, when 30% and 25V0 of these cohorts, respectively, had

developed AIDS after about 7 years. Progression time distributions have been

estin)ated for shorter times for ottler cohorts.

Unfortunately, error bars are large on all of these estimates because of the

small sample sizes, Also, in most cohorts, conversion times are known only within

some general time period, with the earlier conversion times the least well

measured. In addition, the rate of developing AIDS depends upon the age, health

and sex of an individual as well as the course of the disease, e.g., KS, PCP or

dementia.

We cannot wait another 10 years or more for the data before estimating the

distribution beyor~d 8 years One way to make these estimates is to choose a

reasonable functional form and fit the parameters to the initial portion of the curve

using existing data. A reasonable function should have an initial shape similar to

the data and should be nonsymmetrical, with some people developing AIDS many,

many years after infection. These restrictions still leave the future shape of the

curve arbitrary, Weibull, qamrna , and log logistic distributions have been used ir~

various studiw by prevlo( Iuthors (Lui et al., 1986; Medley et al., 1987). We have

chosen to iJw the Wcib~lll distribution of Medleyet al.,

(61)

Wlttl p := 24, q = 0.11 for the tlmcs from lr~fuctlor~ to AIDS, primarily bccausc It
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agrees well with the first 7 years of estimates from the pcwtion of the San Francisco

Hepatitis B cohort for whom the date of infection can be estimated (George Lemp,

per~onal communication). This distribution, shown in Fig. 6.1, hasa maximum at 7.5

yef?rs and a median value of 8 years. This function is chosen such that all infected

pe-~ons eventually get AIDS. If less than 100”A of the infected people get AIDS, the

tail of the distribution should be reduced, but the first 7 years should be left

unchanged.

To derive the rate y(t) of getting AIDS at time T after infection from C’(t), we

noto that the solution to It + IL = -y(~) l(t,~) is l(t, ~) = exp[-~O’ y(t)dc] l(t-t,O). Thus,

the fraction of in fecteds infected at t-t who have not developed AIDS by time t is

the exponential coefficient, exp[-Jo’ y(~)d~]. This fraction is also 1-~0’ C’(t)dr.

Equating these two expressions, we see that

I

1

Y(L) = (; ’( L) II-(,’(L) I-l . (:(L) = c’ (l,,)(ftd ,
0

(6.2)

is the rate of developing AIDS. y(t) is shown in Fig. 6.1 for the Weibull of Eq. (6.1).
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Fig. 6.1, Convermm from infection to A/OS as gwen by Eq, (6, 1) w~th p = 2,4, q x
0,/ 1, Here C(t) is the probability of developing AIDS by Lyears after /n feet/on, C’(L)
is the prohab///ty denslt of developin~ A/DS at L years after /n feet/on, and y(t-) IS

rthe conditmna/probabi ity density of first devtdoplng A/OS at time 1
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A possible way to estimate the distribution beyond current conversion times is

to collect data on serological markers such as T-4 cell counts and T-4/T-9 ratios as a

function of time since infection. These markers indicate the rate of disease

progression, even in otherwise asymptomatic individuals: Elrodt et al.(1986), and

Redfield (1987) found that over 80% of their cohorts deteriorated in 2- to 3-year

periods. If distribution functions for these markers were estimated for different

times since infection, then they could be projected into the future to predict the

progression time distribution.

B. INFECTIVITY

In Section 111.B. we postulated a dependence of the infectiousness of a contact

on the clinical status of the infector, which is shown as the dashed line in Fig. 6.2 for

a time to AICJS of 8 years, This postulate is based on a few measurements of viral

presence as a function of clinical status and on speculations about viral interactions

with the immune system. Information about actual variations of infectivity with

disease progression are anecdotal at this point. Even information on average per

contact. infectivity is only good enough to make estimates on its order of

magnitude. Padian et al, (1987) have used p?,rtner studies to estimate an average

per contact infectivity from man to woman of 0,001 when no other venereal

diseases are present. Grant et al. (1987) have used seroprevaience estimates to

estimate a per partner infectivity for man-to-man transmission (with receptive and

insertive intercourse) of ip = 0.10, but they had no information on numbers of

contacts between partners. I_hey also make some estimates for per contact

in fect~vity assuming a fixed number of contacts per month and get a range of 0.004

for 8 contacts to 0.03 for I cor~tact per month only a study with information about

the number of contacts betweel~ partners and the clinical st~tus of the partner can

gi{,t~actual numbers, but these d~t~ indicate tll~tttl~aver,l~t: :flfectivity of a sexual

contact probably lies between 0.001 and 003

We assumed above that the ir~fectlousrless of a single contact, !(!), IS the

average for all ir~fected adults, The Irlfectiousness of any single individual, 11(1), may

have occasional (Jps and downs as health varies, and these variations will be

smoothed out when averages arc taken More than this, there is a wide spread in

the r~tl’ at which irnmunc systems duterlorate We car) thirlk of i,(l) as tt~c sum of

two fur~ctlons: I,(I), which gives the Inltlal Immune response as viral counts first go

up ~nd then ~re depleted by ar~tihody rcsporlse; and l,(~,t~), which gives the lor~g

term immune response ir~ terms of the Indlvidua! $ time to AIDS, [,1, after Infection
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Fi .6.2 The infectivity of an average person infected at time t is a ,srneared version
?o the infectivity of an iri.dividual. We have postulated an individual infectivity

i;(t,ta) = I (T,~~~= i*(T/Tw. ~hedottedlineshcwsil~z,t.~forz. = /3years,and the
so/id /ine SLOWSthe average i’tfectivity, i(t), given by Eq. (6.3) with C’(IJ as In Fig 6.1.

If the time to AIDS is gi’~en by a probability distribution as C’ (La), then comparisor~

of a model with Caexplicit and our l:~{tdel without Cashows that the average

infectiousness is

I

m

i(l) “= i,(l) t i (L L )(;’( ,l)dL,l(l ,(7(1)) 1
~2’fl

(6.3)

Figure 6.2 shows the effect of this convoli.von on a speculated ii(t),

Estimates of the time between infe,fi~i~ and antibody refponse are difficult to

make. Not only are accidents to health care workert with documented

seroconversion rare, but also few pee~!e at risk have been tested frequently enough

to obtain good estimates of their seroconve sion date~ T!~us, this time interval may

be from a few weeks to a few month and may be different for different

individuals. The relation between viral ples~nce and antibody response also is not

well established Thus, the aver{ge width of $Iw Initial peak ~rld the ratio between

the maximum and minimum values are unknown.
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For the ~-model calculations of the next section, we have taken i,(t) = O and

iz(~,~a) = i*(~/~a). We use a piecewise linear infectivity, i*(r/~a), as shown in Fig, 6.2.

The solid line in Fig. 6.2 shows the effect of applying Eq. (6.3) to the Weibull of Fig.

(6.1) and the i*(E/Ta) shown as i2(~,8). We investigated the effect on model solutions

of changes in this profile for i*(x).

c. DEATH RATES

The death rates p and 6(L) are the model parameters for which the best data

exist. If we take p-l to be the average lifetime of an adult, it is around 70-80 years.

On the other hand, if we want p to represent the rate of attrition out of the at-risk

community, a p-l of 30-50 years is more reasonable, In our calculations, we use

P = 0.02.

The probability of death once AIDS symptoms appear can be estim~ted from

C13C mortality data, where deaths are recorded according to diagnosis date. The

rate of death is high at first and gradually decreases, An exponentially decreasing

probability density for death asa function of time since AID~, which givesa constant

death rate, fits adequately. A slightly better fit is found by taking the density

function to be

/)’(1) dlclpl –-( f2L(l t (f:,l ) ‘1 ,
(6.4)

where ( is the time since AIDS symptoms appear and D, = 1 is chosen to normalize

the area to 1 at ~ = 20 years. Now we get the rate of death to be decreasing with t:

I

1

N 1) 1) ’(1.)11-- /)(01‘ , /)(L) - 1) ‘ ( l,,) (fL,,

()

(6.5;

d, = 0.075 and d] =0.05 give reasonably good fits to the CDC data, with 48°A dead in

1 year and 90% dead about 5 years later, A recent follow-up of AIDS cases found

that deaths were severely under reported (Hardy et al., 1987). Thus, this

di!itribution rr, ight underest:inate the true death rate due to AIDS, This

underestimate will be somewhat less severe than it might t ave beer) because of the

wide~pread use of AZT.

D DISTRIBUTION OF RISKS

Sexual actlvtty d~ta from studies of homosexual men d~ow that there IS an

enormous v~rlatlor~ between Indtvlduals lr~ the numbers of partners and the

amount ar~d type of contacts Part~clpar~t\ In the Multicenter AIDS Cohort Study

(MAC5), who were questioned bctwccn April 1984 and March 1985, reported
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between 1 and 500 male partners in the previous 6 months, with a mean of between

5 and 10 (Kingsley et al., 1987). The San Francisco Men’s Health Study recorded the

numbers of their respondents according to the groupings 0,1, 2-9, 10-49, “50

partners in the 2 years before June 1984 (Winklestein et al., 1987). Homosexual men

surveyed in 1984 in London and grouped according to O, 1.5, 6-50, 51-100, and “

101 partners in the previous year show a similar amount of variation (data from T.

McManus reported in May and Anderson, 1987).

These data are available only in interval form, whereas we use a continuous

distribution in our model. Availability of continuous distribution is a common

problem with data. To derive estimates of this continuous distribution, we first

formed the cumulative data set of how many people had less than or equal to xl, x2,

.. . partners in the time interval, where xl, x2, e~c., are the top value for the interval.

The last xl is chosen somewhat arbitrarily, We then interpolate the cumulative data

with a smooth, monotonicity-preserving interpolant, such as constrained cubic

splines. Differentiating the interpolant gives the continuous density function Data

sets from different studies, with different intervals, can be compared, or combined,

using weighted linear combinations of the interpolants, with weighings

appropriate to sample size or other knowledge (such as date of sample or sampling

procedure). Figure 6.3 shows the contiguous density function obtained from

combining the McManus data with data from Carrie and Weller, also reported in

May and Anderson, 1987,

The density functions from these interpolations of the San Francisco and

London data can be used to derive average partnership densities and variances for

each grouping. These estimates (especially the variance) depend on how large the

maxlrnum was assumed to be for the group with 50 or 101 partners, The MACS

study Indicates that this number is large because there are people far out in the

dlstributiont giving it a long tall (t lngsley et al,, 1987) For the London data, wh~ch

are given in terms of partners/year, a simple fu~~ctlor~ that approximates the d~t~ IS

0,06(1 t 0.02r)’. This functlor~ has a mean of 25 partner% pcr ytxir, matched to the

mean of the Interpolant, ar~d a varlarlcc of 25’~3 p~rtr~ers per year At r = 75, the

function Is 00015.

The fact that this Invurw quartlc functiorl looks much l~ke th~! data l’.

Interesting, For functions of the form S,,(n) = a(l I br)”, the exponent r! = 4 Is th{:

smallest lr~tcger choice beforo tt~~ variance bc~.ur~~esInflnltc If ‘(”e (?Xpect hutndlllty

to hr’ a< varlablc (withirl tlr~ite remorl) as powble, we mtcjht prcdlct that all risk

behavior WIII follow a similar dlstrlbutlon with n between 3 and 4 The dottwJ Ilnc
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0.080

T

PA R’I’NEKS PER YEAR

Fi . 6.3. The distribution of homosexua/ men attending STD clinics in London,
fo tained by combining data of McManus (partners/year) and of Carrie and Wel/er

(partners/month) using the procedure outlined in the text. The dotted /ine shows
the inverse quartic with the same mean as the data. (Data reported in May and
Anderson, f987).

in Fig. 6.3 shows the inverse quartic, with the mean matched to the data. In the risk-

model calculations of Section Vll, we used this inverse quartic, with a mean of 24

partners per year.

Information on the number of contacts between different types of partners

(long term, casual, prostitutes) is scarce, even for these homosexual cohorts. This

critical information is beginning to be collected (Joseph et al., 1987), Because

transmissibility through different types of contacts may be different, the frequency

of each type of contact needs to be quantified. Without such knowledge, the best

that we can do is to make some reasonable assumptions and explore various

possibilities

The assumptions that we use are that people with large numbers of partners

have one contact with each partner and that people have more contacts wltl~ each

partner when both partners have fewer partners, up to some maximum number.

For simplicity, we use the contact function C(r,r’) = 1 + (c, -l)exp[-cl(r + r’)] and vary

the constants c, and cl.

Behavior Ir_I the homosexual community has changed substantially since these

responses were recorded. By rnld- 1982, the first news stories on AIDS began to have
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an impact (Altman, 1986). The change in homosexual behavi~r through fewer

contacts or safer sexual practices is reflected both by the drop in rectal gonorrhea in

San Francisco (Judson, 1983; Golubjatnikov et al., 19S3) and in the results of cohorts

surveys (Winklestein et al., 1986; Martin, 1987). We would eventually like to

incorporate these changes, but we can first use our model to ascertain whether it

captures the infection pattern that occurred before this change. Perhaps

information from contact-tracing s;udies (Auerba(h et al., 1984) cap be used to

understand the important questions of ptirtner selection and frequency of various

types of contacts between partners.

Similar information is needed about het~srosexual behavior and about needle

use. Who does what with whom and how often are very important questions to

answer if we are to understand this pandemic.
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V1l. SAMPLE CALCULATIONS

Our focus has primarily been on the qu~litative features Gf the early growth of

the epidemic. Therefore, the calculations in this section compare the effects on the

growth of the infected population as parameters are varied. We compare the ~-

model and three risk-based models (the random mixing, the biased mixing, and the

diffusion model) with no c-dependence. In the t-model, we examine the

importance of init~al conditions and of the time variation of i(~). For the risk-based

models, we examine the number of infecteds versus risk and show that there are

substantial differences in predictions for the growth of the epidemic. Also, there

are significant differences in who is being infected in the random-choice and

biased-partner models.

We have focused on early growth because it is important to understand how

the epidemic moves into new populations and which interactions are important in

its transient dynamics. Understanding these transient dynamics is the only way to

understand which new populations are at risk and what the short-term effects of

behavior changes and medical advances will be. We are still In the early stages of

this epidemic, so the data that we have come from these stages. We emphasize that

these models are too simplistic to give accurate predictions of the AIDS epidemic

and that the following calculations are meant only to illustrate the behavior of the

models.

A. L MODEL

We first calculate the solution of the model in Eq (53), using (61), (6.4), the

parameter values described ir~ Section VI and the Illltlal conditions

s({)) 10 ,

/((1,1) /) ‘ !12:{ H(I 1):’(1 (’(l)) . 10 “, II -. , (111({
,1 ,,

(71)

,’\((l,l) C)’.!:\ M( II 1):’(1 /)[1)) . 1[1 ‘;, 1 “.1
I

The units are millions of people arid ye(]rs. The scaler parameters used were p =

0.02 yv{]r ‘, r = 36 p~rtners/ymr, p = 1, I(J = 1 8 ye~r$ and [ 1 = Oyears Equations

(6.2) and (6.5) were used for tl~e rates of progression from Infected to AIDS ar~d

from AIDS to deatl~, “l”he Indlvldual lnf~ctl~ity I.,(!, I,,) = 1*(1/[(1) III Eq (6 3) wa> a

pleccwlw llf~car approxlm,lttotl 1.;(I ‘,,11), (11,1/) ..] shown ~J tt~e dottd llt~c II]

Fig, 62, wl~lch for I,, = 8 ycar~conllcct$ th~ (l,l)d,~ta polt)ts
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This distribution and the resulting i(c) are shown in Fig. 62. We also examine the

effect of varying some of these data points.

The solutions were integrated in time with an explicit Adams-Bashford -

Moulton method to an accuracy of 10 G per unit time. The t-derivatives were

calculated with fourth-order finite differences on a uniform grid of 201 mesh

points. The grid spacing and error tolerance were varied to check convergence of

the solutions.

The solution in Fig. 7.la illustrates how the susceptible steadily decline to

near-equilibrium values after 40 years. Initial growth of i~~fecteds and AIDS cases is

exponential, unlike AIDS cases in the United States (Section IV). The infection

saturates the total population in about 17 years, after which it is greatly reduced

because of AIDS deaths. In Fig. 7. lb note that the rate of people Infected per year

att= 15 years has a maximum at { = 3 years. This maximum moves out and

decreases with time because of the depletion of susceptlbles (Fig, 71a).

By using caseload data, probability density functions can be constructed to

determine what fractlonsof the Infected population are In each stage of the disease

or have developed specific opportunistic In fectIons as a functlorl of time since HIV

infection. These distributions can be applied to the predictions of the infected

populations, such as the ones in Fig. 71b, to determine how many people WIII be In

each disease stage at any given time These derived qual~titles and estimates are a

major advantage of calculating the time since Infection asa variable In the model

By varying the Infectivity profile, we can dramatically change the. rdte at wl]l[h

the susceptible population IS Infected In Fig 72 we show calcul~tlor~s with four

different infectivity ~rofiles T}I(> verage Infectiousness of an Indlvlduat, ,(,,’l*(x)dx,

IS the same for all four profiles Whe~l the amour~t of Infectiousness In the Inltlal

peak is modlfled, the center region IS raised or lowered to account for the change

The difference In the tran!lent solutlons Illu$trdte} tl~at the shape of the lr~ltl~l pe~k

In In fectlvlty IS lmportdl~t The shdpe If lrnportar~t bQcausc more people are Ir}fected

recently (low {) than 5 7 years ago (high I) Al$o, ll~e l~lyh lnfcctlvlty for I > 5 7

years is Important because of Its long durcltion However, tl}e shape of Il)c Idtc t~lyl~

Infectivity IS not as ln~p(lrtant as the shape of the frol~t pc~k during t}~(’ e,irly part of

the epldemlc becauw there ~~re relatively fuw people lr~ tl~lt l~tv pvrlod If tt)(’

Infected population remains active lr~ tt~l~ late ltIql\ly ll~fl’ctlo~l~ period, tt~e

epldemlc will spread much fwter than If th[’y discover tl~ey are lr~fcctcd and rw~u(e

their sexual actlwty Here ag~lr~ we scc tl~c need to rn(~ke testing wIdvly t~vt]Il,)blu
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Ffg. 7.2, The rate at whtch the suscep~/o/e popu/at/on IS Infected depends upon the
/n fectiv/ty profi/c even when the area under 1,(1,Id) remains unchan ed. S(t) was

rcdcu/ated w~th fq. (7.2) wfth the change$: a. (so/Id) unchanged; b, short da~hes)
/n/t/a/ peak /owered to (c, I) = (0.04,001) and center regton ratsed to (O.7,0,01),
(50,0.0/); c. (ddsh -dot) fn)tf~l peak raised to (O4,0.2) ~nd center region /owered to
(0. 7,00), (5.0,0.0); d (long dashes) f~nal peak r~ised to (8.0,0.3) dnd de/dyec/ by
exterrdlng the center reg~on to (7.0, 0.005)

Next the Inltlal conc!itlons of Eq, (7,1) were changed to match the current

(1968) AIDS case datr+ and the estimates for Infecteds from Section IV by setting p =

0.72, to = 143 years, and [1 = 6,8 years When we compared these solutions with

Fig, 7,1a, starting at time 8,75 ye~rs, we found that the solution from these initial

conditions differed for only a couple of years. After 4 years, the calculat!orv we~e

essentially ~dentlcal and, hence, are not included here If l(~)r IS smaller, the effect

of the Inltlal conditions persl>ts longer and Imposes cubic growth of the cumulative

AIDS cases for the first 5 years This Inltlal cubic growth would be due only to the

past cubic growth of Infecteds In the Inltlal condltlonsof Eq (7 1)

B RISK BASED MODt LS

To slrnpllfy the calculations and analysl$, we ellm:nated the t dependence !r~

the rwk based model (5 4) The I Independent paranmters were defined to be the

average va~~ief, y = O 1, 6 = O S, and I = O 025 The lr~ltlal susceptible populatluf~ IS
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distributed in risk as an inverse quartic S(O,r) = SO 3(2m)s(2m + r)-d, with total

population f S(O,r)dr = 10 million, mean m = ~ 6(0,r)dr (10 million) ‘ = 24 million.

There is migration into all risk categories with migration rate equal to the natural

death rate, p = 0.02 times So(r) = S(O,r). Initially, there is a Gaussian distribution of

0.001 million infected individuals, centered at risk r = 1’75, with height 0.0001

million, and no AIDS cases.

Random-Mixinq Model

The risk-based calculation shown in Fig. 7.3 used A(t,r) from Eq, (5.5), with the

contact function c(r,r’) = 1. This calculation corresponds to unbiased random

miking across risk groups with a single contact per partner, With p =0, this

calculation is described by the reduced model described in Section V. C. Because

most of the susceptible have low risk behavior (small r), a consequence of random

partner choice is that most of the partners of high-risk behavior people have low

risk. This result is contrary to the sparse sociological data that are available.

Because most of the partners of high-risk people are low risk, the high-risk

group acts as a pool of infection foi the lower-risk group, causing the lower-risk

populations to become infected very quickly, with most of the early ‘ilDS cases in

lower risk categories. The distribution of the populations at 10 years is shown in

Fig, 7.3b as a function of risk. The distribution of the infected population is shown

in Fig. 7 3C for a sequence of times, We remark that if we had been plotting the

fraction of the population that is Infected, I(t,r) / N(t,r), then a saturation wave of

the fraction of Infecteds irl a particular risk group would sweep from the high-risk

categories Into the lower risk categories However, because there are so many

more suscept~bles at low nsk than at Inlgh risk, the total number infected does not

have thlsshapc at all

The Inltlal growth of Infccteds and AIDS cases IS exponential for thi\ model,

just as for the I model By time 10 years, the Infection saturates the populat~on and

the ~usceptlbles arc greatly reduced }Iowevcr, the people at lowest risk are

protected, so the equlllbrltim susceptible population IS somewh~t larger than for

the I rnodcl and the tot~l number infected Issonwwhat less

Next, wc er~fcrrce the blmed mixing re5trlctlor4. that people have contacts only

with Indlvlduals having s!fnllar risk bchawor The contact function
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c(r,r’) = 1, risk-based model in Eqs. (5.4) and (5.5)
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-{, (r+ r”)
I

(1)-,/”) 1 t P (co- 1)

(7.3)

and the acceptance function p(r, r’) defined by Eqs. (5.7), (5.9) and (5.10) are used.

In the calculations shown in Fig. 7,4 we used the constants co= 11, c1 =0.1 and

c = 0,0125. Note that in contrast to the random-mixing example, the intecteds in

Fig, 7,5a grow as a quadratic polynomial as the saturation wave shown in Fig. 7.5c

sweeps from high-risk into the lower-risk groups The growth of in fecteds is much

slower: after 40 years the lowest-risk susceptible have not yet become infected

The current number Cf AIDS cases at 40 years is about the same for the two

calculations however, and the number infected is actually greater. Thus, the

everltual Impact of the epidemic may tm just asdevastatlng, depending on whether

It can continue to reach the larger, lower-risk populations or not

Note In Fig 75b that the AIDS cases at time t = 10 years have a broader

distribution than do the infecteds and AIDS cases lag behind the infection wave.

Thi$ scenario IS closer to the observed distribution of risk behavior in the early AIDS

cases than the unbiased mlxlng model Although this model IS far better than the

unbiased random mixing model, we believe that it will be slgnlficantty Improved I:

we add a blend of biased mlxlng with a lower level of unbiased random mixing,
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Fig. 7.4a. The infectedsin the biased-mixing mode/in Eqs. (5.4), (5.7), (5.9), and
(5.10) with the contact functioning Eq. (7.2) grows asaqua~~ratic po/ynomid/ fcr
many years, aftera brief trans~ent due to the initia/ conditions.

Also, people do not maintain the same risk behavicr forever, Therefore, we are

considering adding a mechanism that will allow for some migration of risk

behavior.

Diffusion-Risk Model.-.-— —

The solution of the nonlinear diffusion model in Eq, (51 1) in Fig. 7.5 is shown

for u = 0.01 and the same initial conditions as the previous risk models. The

infected saturation wave in Fig, 7,5b IS similar to tne one shown in Fig, 7,5c, which

this equation approximates. The major di..t~l~ction between the two models is the

lack of birth/death ptcxesses with the model in Eq, (5,1 1), This lack causes the

infected population to be larger because in fccteds are never removed by AIDS, and

the larger infected population can then infect more susceptible, causing a faster

epidemic, Also, new susceptible are not created, causing an even more rapid

depletion of the population. The epidemic is, however, polynomial in time, as was

the calculation in Fig 7.5.
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Vlll. SUMMARY

Mather,latical models for the spread of the AIDS virus are essential tools for

understanding the AIDS epidemic. Using models, we can choose desired sets of

competing forces and study their interactions to irr]prove our understanding of the

essential relationships between the social and biological mechanisms that influence

the spread of the disease. The relative influence of various factors on the spread of

the epidemic, as well as the sensitivity to parameter variation, can be ascertained.

We can use this knowledge to help set priorities in research. Once the important

forces have been identified, we can de’lelop models with which we can run

computer experiments comparing the outcome of different scenarios for the future.

Computer experiments can save time, resources, ~nd lives, allowing us to predict the

future and acting as a control group for true experimental situations.

As a first step in developing a reliable model, we have used a simple

deterministic model to explore the imp~ct of various plausible shapes for the

infectivity as the time since infection increases. These calculations, which use an

average risk behavior, point out the importance of measuring the variability of the

infectiousness during the disease,

We have then used models that stratify the population according to the

number of sexual partners per year and have compared random partner choice with

a strong bias of like prefers like. The two mixing patterns result in radically

different epidemics. This difference indicates that much more must be known

about the interactions between people that lead to AIDS virus spread before it will

be possible to accurately predict the AIDS ep~demlc. The numt~er of sexual partners

that people have, the partner selectlor~ process, and the amount and type of

contacts between partr~crs must be understood and correlated with sociological

Information about the partr~ers, such as hcwv many partners your partners have

Slmllarly, patterns of r~ocdlt’ sharlr~q by drug wwrs and the effect of this drug abuse

on wxu~l behavior strongly affect thlscpldcrnlc.

In our ~r~tllysis, WQ l~ave focused or~ tl~e ln~tlal growth of the cp)demlc. If we

arc to predict where this epldemlc is going, we rl~~:st fully understand Its transient

dynarnlcs, ~r~cludlng the rwponw to char;ges lr~ the envlronmt~r~t of the epidemic

The’ Cpldt!rnlc WIII riot red~tl atl L)q~Jlllbrl~Jrll ur~der?~lc ‘~tdtc for a very long tlmt!,

partly bec,~uw of Il]e loIIg (.olivt’rwof] tlrnm from lf~fu~tlol~ to AIDS, d~Jrlng which a

persorl CCIII tratlfmlt the vlru~ 1}11$ tIInC f.]ctor makc~ AIDS ~Jrlllke dlffer~nt from

rn[llly otht’r tIpIdt*mlc$, lllc!{Jdll\g lllW\lt?5 ([31(.+/ dlld $LhL’ll~lU, l~8!I), gOll Orrh L’.l

(Hetl~Lote ,}r~d Yorkt’, llllld), ,II~d ~ypl}llls (M,}rtll]l, 1928) Al~othti’r roa$on IS th,lt
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med cal advances and changes in lifestyle will greatly modify the epidemic.

Education programs are being launched to promote condom use, having fewer

sexual partners, use of nonoxynol-9, the use of sterile needles, and similar practices.

The infectiousness and susceptibility of high-risk individuals in the heterosexual

community may be significantly reduced if programs are initiated to quickly identify

and treat other STDS. More people are being tested for antibodies to HIV and

counseled on the implications of the test results. Treatments are bclng developed

that will prolong the lives of infected persons and perhaps Iowcr their infectiwty. A

partially effective vaccine may eventually be deve!oped. Models can be used to

investigate the effects of each of these programs on the course of the epidemic ,’nly

if they can capture the transients of the epidemic.

In developing models, we must also decide on what questions we want to

answer. If public health officials are to attack this epidemic efficiently, then they

need to know which groups of people are most at risk of infection. Models that

distinguish between behavioral groups may help predict where the infection is

likely to go next, our risk-based model is aimed toward this question, although it is

at present too simplistic to use for thi~ purpose

We can choose parameters in our preferential-mixing model that ensure that

AIDS cases in the numerical simulations match the past history in the United States.

Many other reasonable models can also quantitatively fit these case:, but may

predict a very different future. Quantitatively matching past AIDS cases is not,

ttlerefore, sufficient to distinguish between models. Qualitative discrepancies

between AIDS cases and the model need to be explained; for example, models with

initial exponential growth do not fit the U S, AI DS case data

Models must be compdred with data from studies on seroprevalence and risk

behavior versus infection. For example, we plan to co:npare our preferential mixing

model to the San Francisco Hepatitis B study. In this ~tildy cjf sexually active

homosexual men, which started In 1978, information on numbers of steady and

rlonsteady sexual partners and r~umbers of contacts per partner was collected ancl a

series of serum samples were stored from a subset of the men. Many of these

samples have been tested for HIV, and so a correlation between sexual behavior and

time of infection can be made and compared with our model, Inconsistencies will

be seen, and the model WIII have to bc revised to account for them.

Limitations of the dat~ WIII greatly irlfluerlcc the capability of models to

accurately predict the future Many of the scr~sltlve parameter values, such as the

magnitude and variability of Ir-lfect.louwess, WIII be knowr~ ,Iccurately only after
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years of careful study. The current lack of a national AIDS data base center to

collect, analyze and distribute the available data is a severe block to our

understanding. We support establishing a data center that will encourage closer

collaborations between modelers and data collectors. The modelers will be more

driven to answer questions raised by data, and they will pose questions that will

suggest new data that should be collected and more effective sampling strategies

to reduce the variance in the results. Focusing on the data helps bridge the gap

between mathematical modelers and epidemiologists. Fortunately, the creation of

a national AIDS data base center is one aspect of tht AIDS epidemic that can be

solved with appropriate funding.

Unlike many other diseases, HIV infection$ can persist (invisible and seemingly

dormant) in a few isolated individuals (with low sexual activity) for long times. This

feature can cause sporadic Iota! epidemics whenever the infected individual passes

the virus to a highly sexually active person. In these situations the virus can spread

raoid!y without warning, infecting a great many people. These sporadic events

should be modeled by a stochastic rather than a deterministic model, such as ours,

that smooths over the sporadic effects of such local r~ndom features. Because of

the long time between HIV infection and AIDS, this situation can be ascertained

only through vigilant HIVtesting and case tracing.

It is important to use models to understand the spreading in parts of the world

other than Western Europe and the United States. The current prevalence of HIV

infection in central Africa (up to 25°!4 in metropolitan areas) raises serious politlcal

and social concerns. Estimates that up to 26°A of the adults in some regions in Asia,

Africa, and Latin America are annually infected with gonorrhea indicate not only

that behavior may be more conducive to spread of STDS there, but also that

cofactors are different. The presence in central Africa of cofactors, such as genitai

ulcers, and the lower general health of the population may be sufficient to explain

the rapid heterosexual spread of HIV infection there as opposed to the United

States and Europe, or some aspect of sexual behavior may also be important, Also,

ccmdorns ~nci sperm icicles are used less frequently in these regions than tt)ey are in

the United States. We need to understand the regions for regional differences,

before we can predict the epidemic in Asia and Latin America.

In addition to transrr~lssion models like those described in this report, models

of the immune system can play a sigr ificant role in our understanding of the AIDS

epidemic t3y adding to understanding of the interactions of component parts oi

the immune system, these models can help guide vaccine and treatment
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developments. They may aid efforts to rid the infected celis of the virus so they can

live a longer, healthier, happier life. One puzzle that models might help unravel is

why T-4 eel! counts are gradually depleted when apparently less than 0.1°4 are

infected at any time and when the virus can stay dormant in such a cell for a long

time. Depletion may be the result of quick destruction by cytotoxic T-cells or

syncitia formation after infection, or it may be the result of excess HIV envelope

proteins binding to CD4 sites and marking them for destruction. Macrophages, a

significant fraction of which are infected in AIDS patients,, probably provide a

relatively indestructible reservoir of virus !n either scenario (Ho et al,, 1987). Models

may help to distinguish between several plausible scenarios or suggest experiments.

Another puzzle is why chimpanzees, which can be infected with HIV but do not

develop AIDS, seem to be able to fix and complete the complement sequence, while

htimans cannot (Weiss et al., 1986). Does complement effectively destroy the virus

in chimps bef~re the autoimmune response destroys the T-4 cells? Could our

immune system be artificially ;tirnuldted to develop antibodies with a more

effective complement procedure? Mathematical models can organize our

understanding of the immune system in much the same way as the transmission

models described in this paper.

Major advances are required befure either an effective antiviral therapy or an

effecti~le vaccine is developed and becomes widely availab!e. l“h~s, we have to

prepare for a long battle against the spread of the AIDS epidemic, Our computer

simulations of the transmission dynamics of the epidemic will giv~ us insight into

how the epidenllc i;developing and will allow us to visual lzethe future.
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